Science Highlights

2012

Search / Filter Highlights

Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
Filter by Performer
Or press Esc Key to close.
close
Select all that apply.
Close
Using a scanning electron microscope, the identity of individual elements that make up a single grain of a material can be mapped from the x-rays emitted by the interactions of high energy electrons with the material.12.14.15Science Highlight

New Materials Family on the Block

A family of single-phase materials was discovered with coexisting magnetic and electrical properties having potential for electronic applications. Read More »

The width of a graphene nanoribbon determines its electronic properties, but controlling that width at the atomic scale is a challenge.12.14.15Science Highlight

Legos for the Fabrication of Atomically Precise Electronic Circuits

Pre-designed molecular building blocks provide atomic-level control of the width of graphene nanoribbons. Read More »

Whether a solid or liquid forms from charged polymers depends on the “handedness” of the oppositely charged polymer chains.12.14.15Science Highlight

Will It Be a Solid or a Liquid? The Molecular Structure Has the Answer

Oppositely charged polymer chains can be “right-handed,” “left-handed,” or have no “handedness” at all, which controls whether a solid or liquid forms. Read More »

Dr. Aranh Pen (back row) and students Shaun Loveless, Scott Essenmacher, Eric Greve, and Tara Mastren (right to left) are part of the team that is testing a new method to harvest long-lived radioisotopes from the remotely operated aqueous target device (background) at the National Superconducting Cyclotron Lab.11.01.15Science Highlight

Reaping Radioisotopes

Researchers harvest long-lived isotopes that are difficult or impossible to acquire otherwise. Read More »

A simple chemical analogue to a biological cell responds to a perceived threats.11.01.15Science Highlight

Spontaneous Pressure Regulation within Artificial Cells

Simple human-made cellular analogues both sense and regulate in response to externally created stress. Read More »

11.01.15Science Highlight

One Photon or Two?

First mixed matter/anti-matter probe aims to solve decade-old proton puzzle. Read More »

A stripe-shaped magnetic region (domain), shown in blue (top left) in an ultrathin film device (orange structure). The narrowing region of the device causes the current distribution to change (two of the three red arrows change direction), leading to the breakdown of the magnetic domain into circular disk-shaped bubbles, called skyrmions (bottom left) Magnetic skyrmion bubbles (bottom right) were experimentally observed using magnetic imaging.11.01.15Science Highlight

Creating Novel Magnetic Islands for Spintronics

Generating and moving small, stable magnetic islands at room temperature could be the ticket to more energy-efficient electronics. Read More »

The ion accelerator at the Laboratory for Experimental Nuclear Astrophysics produces the highest intensity proton beam current in the world for measuring nuclear fusion reactions that take place in stars.11.01.15Science Highlight

Probing Nuclear Reactions in Stars

Novel experiments measure unusual thermonuclear fusion of hydrogen with a rare oxygen isotope. Read More »

Schematic drawing shows an electron (gold sphere) moving in the direction of the green arrow on the surface of a topological crystalline insulator. In this material, the electron’s quantum-mechanical spin (up) (blue arrow) is coupled with the direction of its motion in such a way that reversing its direction of motion would reverse the direction of the spin (down).11.01.15Science Highlight

You Can Have Your Conductor and Insulator, Too

Scientists synthesized a theoretically-predicted material with unusual current-carrying properties that could open the door for next-generation electronics. Read More »

(Left) Silicon wires with match heads and (right) light absorption profile of a single match-head wire at 587 nm absorption.11.01.15Science Highlight

Match-Heads Boost Photovoltaic Efficiency

Tiny “match-head” wires act as built-in light concentrators, enhancing solar cell efficiency. Read More »