Science Highlights

Filter within BES Additional Filters Filter by Performer
Or press Esc Key to close.
Select all that apply.
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
The width of a graphene nanoribbon determines its electronic properties, but controlling that width at the atomic scale is a challenge.12.14.15Science Highlight

Legos for the Fabrication of Atomically Precise Electronic Circuits

Pre-designed molecular building blocks provide atomic-level control of the width of graphene nanoribbons. Read More »

Whether a solid or liquid forms from charged polymers depends on the “handedness” of the oppositely charged polymer chains.12.14.15Science Highlight

Will It Be a Solid or a Liquid? The Molecular Structure Has the Answer

Oppositely charged polymer chains can be “right-handed,” “left-handed,” or have no “handedness” at all, which controls whether a solid or liquid forms. Read More »

A simple chemical analogue to a biological cell responds to a perceived threats.11.01.15Science Highlight

Spontaneous Pressure Regulation within Artificial Cells

Simple human-made cellular analogues both sense and regulate in response to externally created stress. Read More »

A stripe-shaped magnetic region (domain), shown in blue (top left) in an ultrathin film device (orange structure). The narrowing region of the device causes the current distribution to change (two of the three red arrows change direction), leading to the breakdown of the magnetic domain into circular disk-shaped bubbles, called skyrmions (bottom left) Magnetic skyrmion bubbles (bottom right) were experimentally observed using magnetic imaging.11.01.15Science Highlight

Creating Novel Magnetic Islands for Spintronics

Generating and moving small, stable magnetic islands at room temperature could be the ticket to more energy-efficient electronics. Read More »

Schematic drawing shows an electron (gold sphere) moving in the direction of the green arrow on the surface of a topological crystalline insulator. In this material, the electron’s quantum-mechanical spin (up) (blue arrow) is coupled with the direction of its motion in such a way that reversing its direction of motion would reverse the direction of the spin (down).11.01.15Science Highlight

You Can Have Your Conductor and Insulator, Too

Scientists synthesized a theoretically-predicted material with unusual current-carrying properties that could open the door for next-generation electronics. Read More »

(Left) Silicon wires with match heads and (right) light absorption profile of a single match-head wire at 587 nm absorption.11.01.15Science Highlight

Match-Heads Boost Photovoltaic Efficiency

Tiny “match-head” wires act as built-in light concentrators, enhancing solar cell efficiency. Read More »

The microtubules (green) pull polymer nanotube networks (red) from polymer reservoirs (fluorescence image).11.01.15Science Highlight

Build a Network, Cellular Style

Bio-based molecular machines mechanically extrude tiny tubes and form networks, aiding in the design of self-repairing materials. Read More »

Working with Molecular Foundry staff, an international team of users utilized the TEAM 1 microscope to plot the exact coordinates of nine layers of atoms with a precision of 19 trillionths of a meter.11.01.15Science Highlight

Unprecedented Precise Determination of Three-Dimensional Atomic Positions

For the first time, electron tomography reveals the 3D coordinates of individual atoms and defects in a material. Read More »

Ultrafast pump-probe microscopy on individual vanadium dioxide microcrystals measures the spatial and temporal variability of ultrafast dynamics of the insulator-to-metal transition.11.01.15Science Highlight

Small Variations Mean Big Changes in Oxide’s Transformation from Insulator to Conductor

Study reveals surprising non-uniformity in vanadium dioxide that could one day enable more energy-efficient technologies. Read More »

Researchers from the Molecular Foundry, working with users from Columbia University led by Latha Venkataraman, have created the world’s highest-performance single-molecule diode using a combination of gold electrodes and an ionic solution.11.01.15Science Highlight

Viable Single-Molecule Diodes

Major milestone in molecular electronics scored by Molecular Foundry and Columbia University team. Read More »

Last modified: 11/9/2015 8:59:08 PM