Science Highlights

This artistically enhanced depiction shows an atom being hit by a strong rosette-shaped laser field (purple), ripping an electron (green) from the parent atom that then re-collides with the atom.06.09.16Science Highlight

Combining Electrons and Lasers to Create Designer Beams for Materials Research

Tabletop laser systems generate extreme ultraviolet probes will advance research towards a new generation of energy-conserving electronics. Read More »

Absorption of sunlight in silicon solar cells results in losses due to heat from “hot” photo-excited electrons.06.09.16Science Highlight

Taking on the Heat in Solar Cells: New Calculations Show Atomic Vibrations Hurt Efficiency

Theoretical modeling of energy loss in solar cells may lead to more efficient materials to convert sunlight to electricity. Read More »

The schematic shows protected edges that allow the propagation of these magnetic waves in a single direction along the edge of the crystal.06.09.16Science Highlight

Surf’s Up: Magnetic Waves on the Edge

First realization of a novel material that can conduct magnetic waves on its edge, but not within its bulk. Read More »

A liquid metal technique drives the transformation of uniform alloys into a nanoscale mixture of two materials with different compositions.06.09.16Science Highlight

Nano-Sculptures for Longer-Lasting Battery Electrodes

Liquid metal transforms solid alloy into pore-filled structure that could be used in future batteries. Read More »

Films integrated into the cell created an efficient solar-to-hydrogen cell using Earth-abundant cobalt rather than rare and expensive metals.06.08.16Science Highlight

Hydrogen Production from a Relative of Fool’s Gold

Affordable, Earth-abundant catalyst achieves efficient solar-driven hydrogen fuel production. Read More »

The cross-section shows key features of a new solar cell architecture.06.08.16Science Highlight

Keep it Simple: Low-Cost Solar Power

A simplified architecture leads to efficiencies rivaling conventional silicon solar cells. Read More »

Nanometer-sized junctions between two types of two-dimensional semiconductors could replace conventional wider three-dimensional junctions.06.08.16Science Highlight

Patterning Smaller Junctions for Ultrathin Devices

Patterned arrays of nanometer-sized connections in two-dimensional semiconductors could enable ultrathin integrated circuits for smartphones and solar cells. Read More »

Electrons have distinct energy levels where the energy is minimized, similar to a ball rolling down a mountain to a valley.06.08.16Science Highlight

Laser Manipulates Electronic Properties

Dressing electrons with a rotating field of laser light creates distinct, controllable states, opening the door for innovative electronics. Read More »

The atomic force microscopy image of the junction between the graphene domains shows an electron-deficient region.06.08.16Science Highlight

This Message Will Self-Destruct

New electron-beam writing technique controls electronic properties for future on-demand re-configurable electronics. Read More »

Perovskite-based nanowire lasers are the most efficient known.06.07.16Science Highlight

World’s Most Efficient Nanowire Lasers

Materials with extraordinary performance in solar cells are discovered to be efficient, tunable lasers at room temperature. Read More »