Science Highlights

Atomic structure of the adsorbed carbon dioxide (grey sphere bonded to two red spheres) inserted between the manganese (green sphere) and amine (blue sphere) groups within the novel metal-organic framework, forming a linear chain of ammonium carbamate (top).07.01.15Science Highlight

Cooperative Carbon Capture by a Novel Material that Mimics a Plant Enzyme

Innovative materials adsorb carbon dioxide via an unprecedented cooperative insertion mechanism. Read More »

To help identify routes to mitigate toxic polycyclic aromatic hydrocarbons and soot formation from combustion engines, scientists identified the full list of products in a key reaction between phenyl radicals and oxygen.07.01.15Science Highlight

Up in Flames: Phenyl Oxidation Product Distribution

Researchers determine the reaction pathway to how soot and other toxic components form in combustion systems. Read More »

Snapshots of a helium bubble just before bursting when grown at slow versus fast rates.07.01.15Science Highlight

Double, Double Toil and Trouble: Tungsten Burns and Helium Bubbles

New models reveal the impact of competing processes on helium bubble formation in plasma-exposed tungsten. Read More »

Diamond optical cavities allow laser light (green arrow) to excite electrons on atoms held within the cavities, transferring information about the atoms outward via light (red arrow).06.01.15Science Highlight

Miniscule Mirrored Cavities Connect Quantum Memories

New structures could accelerate progress toward faster computing and high-security data transfer across fiber optic networks. Read More »

Nucleobases (shown here is thymine) encode genetic information inside DNA.06.01.15Science Highlight

Molecular Sunscreen: How DNA Protects Itself from UV Light

X-ray pulses from the Linac Coherent Light Source probe the molecular dynamics of photoexcitation. Read More »

In this microfluidic water electrolysis device, the channels in which oxygen and hydrogen are generated by splitting water are separated by a chemically inert wall (red). The conduction of protons from one channel to the other, which is required for continuous operation, occurs via a Nafion® membrane cap (blue).05.01.15Science Highlight

Can Small Go Big? Microfluidics Aid Quest for Artificial Photosynthesis

Small-scale device provides easy “plug-and-play” testing of molecules and materials for artificial photosynthesis and fuel cell technologies. Read More »

Dr. Charles McCrory is setting up a rotating disk electrode experiment, which is used to measure a material’s catalytic activity and stability under conditions that are required for a working water-splitting device.05.01.15Science Highlight

Comparing Apples to Apples: Benchmarking Electrocatalysts for Solar Water-Splitting Devices

Objective comparison of catalyst performance may enable the development of systems for artificial photosynthesis. Read More »

Gallium arsenide nanowire arrays grown on a silicon substrate are studied using photoelectrochemistry.05.01.15Science Highlight

Stacking Semiconductors for Artificial Photosynthesis

Nanowire-based design incorporates two semiconductors to enhance absorption of light. Read More »

Schematic view of the chlorine (Cl) addition - hydrochloric acid (HCl) elimination reaction with isobutene.05.01.15Science Highlight

Roaming Dynamics in Bimolecular Reactions

Study reveals peculiar mechanism of radical addition-elimination, enabling more accurate modeling of combustion and other reactions. Read More »

Hot nanowires emit lattice vibrations known as phonons into underlying materials. When closely packed, phonon collisions can more efficiently transport heat away.05.01.15Science Highlight

Staying Close and Keeping Cool

Hot nanostructures cool faster when they are physically close together. Read More »