Science Highlights

Top view (left) and side view (right), illustrating the porous and layered structure of a highly conductive powder (Ni3(HITP)2), precursor to a new, tunable graphene analog.Science Highlight

Towards a Tunable Graphene-like Two-Dimensional Material

Researchers have created a porous, layered material that can serve as a graphene analog, and which may be a tool for storing energy and investigating the physics of unusual materials. Read More »

Oxygen ions can zigzag or take a circular route (red arrows) through this metal oxide crystal made of strontium (green), chromium (blue), oxygen (red) atoms...Science Highlight

Bringing Order to Defects - Making Way for Oxygen to Move

New metal oxide material works at temperatures low enough to improve fuel cell efficiency. Read More »

Nanobionic Leaf: DNA-coated carbon nanotubes (top) incorporated inside chloroplasts in the leaves of living plants (middle) boost plant photosynthesis.Science Highlight

Nanobionics Supercharge Photosynthesis

Carbon nanotubes and inorganic nanoparticles enhance photosynthetic activity and stability. Read More »

Arrays of nanoribbons of lead zirconate titanate (gold, bottom) on a sheet of flexible polymer (brown) produce current pulses during each heartbeat.Science Highlight

Power from the Heart

Advances in materials processing enable harvesting of energy from heartbeats. Read More »

A series of x-ray scattering images are taken at ultrafast time intervals with an x-ray laser after excitation with an infra-red source that energizes the vibrational modes of a Germanium crystal.Science Highlight

X-ray Laser Used to Produce Movies of Atomic-scale Motion

Stroboscopic x-ray pulses scatter from a vibrating crystal and reveal how energy moves. Read More »

An anti-Brownian single-molecule microfluidic trap is used to observe individual light-harvesting antenna complexes in solution.Science Highlight

Shining Light on the Fleeting Interactions of Single Molecules

New technique allows scientists to observe the dynamic structural changes of single biomolecules in solution. Read More »

This graphical representation of lignocellulosic biomass based on supercomputer models illustrates a new study about the inner workings of plant cell walls during bioenergy production.Science Highlight

Breaking Down the Mechanisms of Biomass Deconstruction

Study reveals insights into plant structural changes during bioenergy pretreatments. Read More »

The figure shows measured electron bunch images with lasing suppressed (top left) and full lasing (right).Science Highlight

Making the Old New Again: Measuring Ultrashort X-ray Laser Pulses

Researchers have developed a powerful new diagnostic tool for the Linac Coherent Light Source (LCLS) with femtosecond resolution. Read More »

A fragment of the crystal structure of the new ice is shown where the oxygen atoms are blue and the molecular hydrogen atoms pink.Science Highlight

Inside Ice Under High Pressure

New insights from neutron diffraction reveal changes to atomic structure. Read More »

The weak signal of two gadolinium ions - shown as brilliant spheres - was used to solve the high resolution crystal structure of the model protein lysozyme.Science Highlight

Solving Protein Structures from Scratch

A novel tool to determine the structure of difficult to crystallize proteins. Read More »

« Previous 1 ... 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 22 Next »