Joint Bioenergy Institute

Joint Bioenergy Institute 

 Lawrence Berkeley National Laboratory

Stories of Discovery & Innovation

This image is a network graph—called a “minimum spanning tree”—showing the 7,410 DFT-predicted stable compounds from the Open Quantum Materials Database (OQMD) at the time the JOM article was completed.07.09.14Stories of Discovery & Innovation

From Human Genome to Materials “Genome”

Government initiative seeks to speed the pace of materials discovery and innovation. Read More »

Troy Van Voorhis, professor of chemistry (left), and Marc Baldo, professor of electrical engineering (right).05.27.14Stories of Discovery & Innovation

Getting More Electricity out of Solar Cells

New MIT model can guide design of solar cells that produce less waste heat, more useful current. Read More »

Photo shows wild type Arabidopsis, a plant with just the two Mediator mutations, a dwarf mutant with reduced lignin production, and a mutant with all three mutations, restored to wild-type size.04.30.14Stories of Discovery & Innovation

Squaring the Circle in Biofuels?

Researchers produce a new type of plant fiber that supports normal growth while easing the difficulties of conversion to fuel. Read More »

Researchers use a near-infrared microscope to read the output of carbon nanotube sensors embedded in an Arabidopsis thaliana plant.03.31.14Stories of Discovery & Innovation

Bionic Plants

Nanotechnology could turn shrubbery into supercharged energy producers. Read More »

A nanophotonic solar thermophotovoltaic device composed of an array of multi‑walled carbon nanotubes as the absorber, a one‑dimensional silicon/silicon dioxide photonic crystal as the emitter, and a 0.55 eV photovoltaic cell.01.27.14Stories of Discovery & Innovation

Harvesting the Sun’s Energy Through Heat as Well as Light

New approach developed at MIT could generate power from sunlight efficiently and on demand. Read More »

Brief Science Highlights

Electron density distribution (indicated by both the blue and red, as areas of deficiency and excess of electrons, respectively) in barium iron arsenide for undoped/nonsuperconducting and doped/superconducting alloys.February 2015Science Highlights

New Path to Loss-Free Electricity

Atomic-scale details of electron distribution reveal a novel mechanism for current to flow without energy loss. Read More »

Optical microscope image of triangular-shaped metal-diselenide monolayer hetero-structures.February 2015Science Highlights

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

New material with a layered, atomic sandwich structure has unique optoelectronic properties. Read More »

Piezo-response force microscopy image of ferroelectric domains in hexagonal erbium manganite...February 2015Science Highlights

Direct Visualization of Magnetoelectric Domains

New microscopy technique reveals giant enhancement of coupling between magnetic and electric dipoles that could lead to novel electronic devices. Read More »

Schematic image indicating the inferred intertwining of the superconducting wave function (green) with the envelope function (blue) for the atomic magnetism.February 2015Science Highlights

Intertwining of Superconductivity and Magnetism

Coexistence of two states of matter that normally avoid one another is revealed by inelastic neutron scattering experiments. Read More »

Scanning electron micrograph image of germanium nanowires electrodeposited onto an indium tin oxide electrode from aqueous solution.February 2015Science Highlights

Highly Conductive Germanium Nanowires Made by a Simple, One-Step Process

Lithium-ion batteries could benefit from this inexpensive method. Read More »