Science Highlights

Filter by Program Additional Filters Filter by Performer
Or press Esc Key to close.
close
Select all that apply.
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
Top view (left) and side view (right), illustrating the porous and layered structure of a highly conductive powder (Ni3(HITP)2), precursor to a new, tunable graphene analog.February 2015Science Highlights

Towards a Tunable Graphene-like Two-Dimensional Material

Researchers have created a porous, layered material that can serve as a graphene analog, and which may be a tool for storing energy and investigating the physics of unusual materials. Read More »

Oxygen ions can zigzag or take a circular route (red arrows) through this metal oxide crystal made of strontium (green), chromium (blue), oxygen (red) atoms...February 2015Science Highlights

Bringing Order to Defects - Making Way for Oxygen to Move

New metal oxide material works at temperatures low enough to improve fuel cell efficiency. Read More »

Nanobionic Leaf: DNA-coated carbon nanotubes (top) incorporated inside chloroplasts in the leaves of living plants (middle) boost plant photosynthesis.January 2015Science Highlights

Nanobionics Supercharge Photosynthesis

Carbon nanotubes and inorganic nanoparticles enhance photosynthetic activity and stability. Read More »

Arrays of nanoribbons of lead zirconate titanate (gold, bottom) on a sheet of flexible polymer (brown) produce current pulses during each heartbeat.January 2015Science Highlights

Power from the Heart

Advances in materials processing enable harvesting of energy from heartbeats. Read More »

A series of x-ray scattering images are taken at ultrafast time intervals with an x-ray laser after excitation with an infra-red source that energizes the vibrational modes of a Germanium crystal.January 2015Science Highlights

X-ray Laser Used to Produce Movies of Atomic-scale Motion

Stroboscopic x-ray pulses scatter from a vibrating crystal and reveal how energy moves. Read More »

An anti-Brownian single-molecule microfluidic trap is used to observe individual light-harvesting antenna complexes in solution.January 2015Science Highlights

Shining Light on the Fleeting Interactions of Single Molecules

New technique allows scientists to observe the dynamic structural changes of single biomolecules in solution. Read More »

This graphical representation of lignocellulosic biomass based on supercomputer models illustrates a new study about the inner workings of plant cell walls during bioenergy production.December 2014Science Highlights

Breaking Down the Mechanisms of Biomass Deconstruction

Study reveals insights into plant structural changes during bioenergy pretreatments. Read More »

Symbiotic fungi called ectomycorrhizae colonize the roots of bishop pine.December 2014Science Highlights

Uncovering Role of Symbiotic Fungi in Soil Carbon Storage

Mycorrhizae inhabiting plant roots have major impact on carbon release rates. Read More »

To better understand how switchgrass acquires and mobilizes minerals, researchers have conducted the first molecular study of transporter genes in this bioenergy feedstock.December 2014Science Highlights

Understanding Mineral Transport in Switchgrass

Genetic insights into nutrient movement will enhance bioenergy feedstock’s sustainability. Read More »

Crop irrigation impacts the use and supply of freshwater around the world, and scientists are working to understand how these impacts may change over regions and time, especially under the influence of climate change.December 2014Science Highlights

Toward an Earth System Modeling Approach to Simulate Irrigation Effects

Land model improvements are enabling more realistic representations of the climate and hydrological consequences of crop irrigation. Read More »

Last modified: 3/5/2015 5:08:02 PM