Laboratory Science Highlights

Search / Filter Highlights

Filters / Search applied:   DOE Laboratory [x]
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
Filter by Performer
Or press Esc Key to close.
close
Select all that apply.
Close
Advanced electron microscopy technique permits the simultaneous collection of both signals: secondary electron (that are sensitive to the surface) and transmitted electron.12.14.15Science Highlight

Atomic-Level Measurements of Rough Surfaces

Researchers use surface-sensitive signals to atomically resolve the structure of a rough surface. Read More »

Whether a solid or liquid forms from charged polymers depends on the “handedness” of the oppositely charged polymer chains.12.14.15Science Highlight

Will It Be a Solid or a Liquid? The Molecular Structure Has the Answer

Oppositely charged polymer chains can be “right-handed,” “left-handed,” or have no “handedness” at all, which controls whether a solid or liquid forms. Read More »

A scanning probe microscope (SPM) can detect two similar signals, which could lead to ambiguous identification of ferroelectric materials.12.14.15Science Highlight

Ferroelectricity – Ambiguity Clarified, and Resolved

Novel technique accurately distinguishes rare material property linked to improving sensors and computers. Read More »

The width of a graphene nanoribbon determines its electronic properties, but controlling that width at the atomic scale is a challenge.12.14.15Science Highlight

Legos for the Fabrication of Atomically Precise Electronic Circuits

Pre-designed molecular building blocks provide atomic-level control of the width of graphene nanoribbons. Read More »

11.01.15Science Highlight

One Photon or Two?

First mixed matter/anti-matter probe aims to solve decade-old proton puzzle. Read More »

Simulation of radioactive beam stopping in the plasma of an electron cyclotron resonance ion source as a first step toward high-efficiency charge breeding.11.01.15Science Highlight

Major Gains in Ion Production for Radioactive Beams

Nuclear physics research with radioactive beams enhanced by high-efficiency charge-breeding techniques. Read More »

(Left) Silicon wires with match heads and (right) light absorption profile of a single match-head wire at 587 nm absorption.11.01.15Science Highlight

Match-Heads Boost Photovoltaic Efficiency

Tiny “match-head” wires act as built-in light concentrators, enhancing solar cell efficiency. Read More »

Working with Molecular Foundry staff, an international team of users utilized the TEAM 1 microscope to plot the exact coordinates of nine layers of atoms with a precision of 19 trillionths of a meter.11.01.15Science Highlight

Unprecedented Precise Determination of Three-Dimensional Atomic Positions

For the first time, electron tomography reveals the 3D coordinates of individual atoms and defects in a material. Read More »

Researchers from the Molecular Foundry, working with users from Columbia University led by Latha Venkataraman, have created the world’s highest-performance single-molecule diode using a combination of gold electrodes and an ionic solution.11.01.15Science Highlight

Viable Single-Molecule Diodes

Major milestone in molecular electronics scored by Molecular Foundry and Columbia University team. Read More »

Schematic drawing shows an electron (gold sphere) moving in the direction of the green arrow on the surface of a topological crystalline insulator. In this material, the electron’s quantum-mechanical spin (up) (blue arrow) is coupled with the direction of its motion in such a way that reversing its direction of motion would reverse the direction of the spin (down).11.01.15Science Highlight

You Can Have Your Conductor and Insulator, Too

Scientists synthesized a theoretically-predicted material with unusual current-carrying properties that could open the door for next-generation electronics. Read More »