Laboratory Science Highlights

Search / Filter Highlights

Filters / Search applied:   DOE Laboratory [x]
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
Filter by Performer
Or press Esc Key to close.
close
Select all that apply.
Close
Nanometer-sized junctions between two types of two-dimensional semiconductors could replace conventional wider three-dimensional junctions.06.08.16Science Highlight

Patterning Smaller Junctions for Ultrathin Devices

Patterned arrays of nanometer-sized connections in two-dimensional semiconductors could enable ultrathin integrated circuits for smartphones and solar cells. Read More »

The crystallized oxide (lighter regions) spelling the word “small” was “printed” on a non-crystallized layer (darker gray) by a well-controlled beam in an electron microscope.06.07.16Science Highlight

Atomic Sculpting with a Microscope

A new tool allows atomic 3D printing. Read More »

Two-dimensional snapshot used to reconstruct the 3D image of a particle.06.07.16Science Highlight

Saturday Night at the Movies: 3D Sneak Preview of Dancing Platinum Particles at Atomic Resolution

Three-dimensional structure of nanocrystals in solution determined with atomic resolution using a new technique. Read More »

Progressively magnified images of graphene nanoribbons grown on germanium semiconductor wafers.06.07.16Science Highlight

Growing Graphene Ribbons in One Direction

New method to fabricate graphene nanoribbon arrays on semiconductor wafers turns semimetal into semiconductor. Read More »

Confined in droplets, exotic phases of liquid crystals have been simulated (left) and experimentally observed (right).06.07.16Science Highlight

Tiny Droplets… Lead to Exotic Properties

Chameleon-like color changes are observed by confining liquid crystals within small drops. Read More »

The ring pattern from the new transmission X-ray diffraction analysis is from the polycrystalline nature of the alloy - in other words, it indicates that the atoms are arranged in small crystalline regions (called grains) that have many different orientations.06.07.16Science Highlight

Finding a Needle in a Crystalline Haystack

New X-ray technique reveals the presence of one-in-a-million large crystalline regions from metals fatiguing—stabilization schemes could lead to impervious metals. Read More »

When light is absorbed by solar cells to make electricity, electrons and “missing electrons” are generated that move through the layers of materials in typical solar cells.06.07.16Science Highlight

New See-Through Material for Electronics

A low-cost, stable oxide film is highly conductive and transparent, rivaling its predecessors. Read More »

The discovery that electrically conductive, hair-like filaments on the surface of Geobacter bacteria could mark a new paradigm for the employment of biological materials in nanoscale electron devices.06.06.16Science Highlight

Bacteria Hairs Make Excellent Electrical Wires

This discovery could lead to low-cost, non-toxic, biological components for light-weight electronics. Read More »

Snakes on a plane: This atomic-resolution simulation of a peptoid nanosheet reveals a snake-like structure never seen before. The nanosheet’s layers include a water-repelling core (yellow), peptoid backbones (white), and charged sidechains (magenta and cyan). The right corner of the nanosheet’s top layer has been “removed” to show how the backbone’s alternating rotational states give the backbones a snake-like appearance (red and blue ribbons). Surrounding water molecules are red and white.06.06.16Science Highlight

Understanding and Predicting Self-Assembly

Newly discovered “design rule” brings nature-inspired nanostructures one step closer. Read More »

View of the surface of a lithium pool in Lithium Tokamak Experiment, as it is heated and cleaned of oxides by a beam of high energy electrons.05.20.16Science Highlight

Hotter All The Way: Lithium Wall Contains Plasma Without Cooling It

Lithium walls open up access to new regimes for the fusion reactor. Read More »