Laboratory Science Highlights

Search / Filter Highlights

Filters / Search applied:   DOE Laboratory [x]
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
Filter by Performer
Or press Esc Key to close.
close
Select all that apply.
Close
Resonant inelastic x-ray scattering data show the existence of a new quasiparticle in strontium iridate (Sr2IrO4).10.01.15Science Highlight

X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity

Creation of new neutral-charge, long-life quasiparticles may help explain high-temperature superconductivity. Read More »

The newly-proposed structure of ceric ammonium nitrate, with an oxygen bridge, may explain why this popular industrial reagent is so versatile.10.01.15Science Highlight

What CAN It Be?

Elucidating Cerium Solution Chemistry Read More »

Three Ti:Saphire laser system used for three-step resonance ionization of Uranium (U), Thorium (Th), and Paladium (Pd).09.01.15Science Highlight

Laser Detection of Actinides and Other Elements

New technique measures uranium, thorium, and palladium with efficiencies up to 500 times greater than current standard. Read More »

Left: Boron-10 coated commercial silver-doped ZnS screens are used to capture ultracold neutrons directly; Right: A large area detector prototype is being examined in a light-tight box. An array of wavelength-shifting scintillator fibers is used to collect light from a 0.5 m by 0.3 m surface.09.01.15Science Highlight

A Large-Area Detector for Fundamental Neutron Science

New scalable cost-effective ultracold neutron detector has many applications. Read More »

Researchers added extra energy to the proton to produce a pair of quarks, which then yielded new particles.08.01.15Science Highlight

Up and Down Quarks Favored Over Strange Ones

The proton's primary building blocks, up and down quarks, are produced more often than strange quarks in scattering experiments. Read More »

The benchmark catalyst Fe(CO)5 is irradiated with ultraviolet light, causing it to lose one of its five carbon monoxide groups.08.01.15Science Highlight

Scientists Track Ultrafast Formation of Catalyst with X-ray Laser

First-of-its-kind measurements provide insights on reactions that could one day turn sunlight and water into fuels. Read More »

A Super Uranyl-binding Protein with high affinity and selectivity could be used to mine uranium from seawater in the future.08.01.15Science Highlight

Skimming Uranium from the Sea

Using computational methods, scientists tailor and adapt proteins to mine uranium from seawater. Read More »

Dynamic and static paths for spontaneous fission of the element fermium-264 in two dimensions (plane of elongation (Q20) and triaxiality (Q22)).08.01.15Science Highlight

Shape Matters when Modeling Nuclear Fission

Realistic computational view of how atom stretches informs microscopic description of nuclear energy production. Read More »

Specially designed, extremely small metal structures can trap light.08.01.15Science Highlight

Light Speed Ahead!

Surface plasmons move at nearly the speed of light and travel farther than expected, possibly leading to faster electronic circuits. Read More »

When gaseous carbon dioxide (center) is dissolved in water, its water-fearing or hydrophobic nature creates a cylindrical cavity in the liquid, setting the stage for the proton transfer reactions that produce carbonic acid.08.01.15Science Highlight

The Importance of Hydration

Spectroscopy combined with theory and computation determines the interaction between carbon dioxide and water. Read More »