Science Highlights

Filter by Performer
Or press Esc Key to close.
Select all that apply.
Additional Filters
Filters / Search applied:   NP [x]
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
Inside the Super-Kamiokande detector, scientists clean light-detecting photomultiplier tubes from a raft as the large underground tank is slowly filled with 50,000 metric tons of ultra-pure water.November 2015Science Highlight

A Nobel for Neutrinos: Super-Kamiokande

Discovery of neutrino oscillations, which shows that neutrinos have mass, garners the 2015 Nobel Prize in Physics. Read More »

Completion of the SNO detector: A technician crouches inside the 12-m diameter acrylic vessel, so clear it can hardly be seen.October 2015Science Highlight

A Nobel for Neutrinos: Sudbury Neutrino Observatory

Discovery of neutrino oscillations, which shows that neutrinos have mass, garners the 2015 Nobel Prize in Physics. Read More »

Assembly of the Majorana Demonstrator Module 1 detectors.September 2015Science Highlight

The Majorana Demonstrator: First Module of Germanium Detectors Comes Online

The Majorana experiment begins its search for neutrinoless double-beta decay. Read More »

Left: Boron-10 coated commercial silver-doped ZnS screens are used to capture ultracold neutrons directly; Right: A large area detector prototype is being examined in a light-tight box. An array of wavelength-shifting scintillator fibers is used to collect light from a 0.5 m by 0.3 m surface.September 2015Science Highlight

A Large-Area Detector for Fundamental Neutron Science

New scalable cost-effective ultracold neutron detector has many applications. Read More »

Three Ti:Saphire laser system used for three-step resonance ionization of Uranium (U), Thorium (Th), and Paladium (Pd).September 2015Science Highlight

Laser Detection of Actinides and Other Elements

New technique measures uranium, thorium, and palladium with efficiencies up to 500 times greater than current standard. Read More »

Researchers added extra energy to the proton to produce a pair of quarks, which then yielded new particles.August 2015Science Highlight

Up and Down Quarks Favored Over Strange Ones

The proton's primary building blocks, up and down quarks, are produced more often than strange quarks in scattering experiments. Read More »

Initial hot spots created by collisions of one, two, and three-particle ions with much larger gold ions.August 2015Science Highlight

Discovered: Tiny Drops of “Perfect” Fluid that Existed in the Early Universe

Particles colliding at nearly light speed reveal information about the true nature of matter. Read More »

The STAR detector measures the energy and angle of the electron from the W boson decay produced in the proton-proton collision.June 2015Science Highlight

Antiquark Makes Positive Contribution to Proton Spin

Scientists shed new light on a proton's spin, refining our understanding of nuclear physics. Read More »

Members of the DCal installation team in the ALICE detector.June 2015Science Highlight

Jetting into the Moments after the Big Bang

Upgraded capabilities ready to explore quarks and gluons ready at the Large Hadron Collider. Read More »

Radium-224/lead-212 generator with the shield cap removed to show the tubing connections to the column.June 2015Science Highlight

DOE Isotope Program Announces Availability of Radionuclide Generators for Medical Research

Lead and bismuth systems are being produced to fill the nation’s need for short-lived, alpha-emitting isotopes. Read More »

« Previous 1 2 3 4 Next »
Last modified: 11/9/2015 8:59:57 PM