University Science Highlights

Filter by Program Additional Filters Filter by Performer
Or press Esc Key to close.
close
Select all that apply.
Filters / Search applied:   University [x]
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
CLAIRE extends the resolution of electron microscopy to allow high-resolution, non-invasive imaging of soft matter.03.31.16Science Highlight

Soft and Small Imaging Breakthrough

Molecular Foundry users develop breakthrough technique for non-invasive electron microscopy for soft materials. Read More »

Scanning electron microscopy image of the hair coating of Saharan silver ants, which shows the triangular cross section of the hairs.03.31.16Science Highlight

Silver Ants Stay Cool in the Saharan Heat

Findings could lead to biomimetic coatings for passive radiative cooling technologies for buildings and vehicles. Read More »

Conceptual art connects the atomic underpinnings of the neutron-rich calcium-48 nucleus with the Crab Nebula, which has a neutron star at its heart.02.29.16Science Highlight

What Is the Size of the Atomic Nucleus?

The neutron skin of the nucleus calcium-48 is much thinner than previously thought. Read More »

SOHO-EIT image from 14 September 1997 showing a huge eruptive prominence in the resonance line of singly ionized helium (He II) at 304 Angstroms in the extreme ultraviolet.02.29.16Science Highlight

Don’t Touch: How Scientists Study the Reactions inside Stars

Indirect method let scientists determine stellar reaction rates, providing detailed information about the universe. Read More »

Artist conception highlights electron behavior in a single layer of iron-selenium atoms (red and purple) on a strontium titanate layer (blue pyramid shapes).12.14.15Science Highlight

Vibrations Raise the Critical Temperature for Superconductivity

Scientists reveal that coupling between electrons and atomic vibrations play a key role in this vexing phenomenon. Read More »

X-rays can characterize the motion of atomic-scale defects (for example, dislocations) relative to the morphology of a nanoparticle in the electrode of an operating lithium-ion battery. The dislocations are extra planes of atoms inserted into the atomic lattice.12.14.15Science Highlight

Tracking Hidden Imperfections Inside Operating Lithium-ion Batteries

Penetrating x-rays can image defects and phase changes during battery charging and discharging. Read More »

Short laser pulses (the wide red arrow) on the order of femtoseconds (one quadrillionth of a second) changed the electronic properties of a material (the brown hexagonal shape) by triggering phase transitions.12.14.15Science Highlight

Lasers Leave a Mark on Materials - At the Atomic Level

Ultrafast laser shots act like dopants to create new electronic properties in materials. Read More »

Advanced electron microscopy technique permits the simultaneous collection of both signals: secondary electron (that are sensitive to the surface) and transmitted electron.12.14.15Science Highlight

Atomic-Level Measurements of Rough Surfaces

Researchers use surface-sensitive signals to atomically resolve the structure of a rough surface. Read More »

Using a scanning electron microscope, the identity of individual elements that make up a single grain of a material can be mapped from the x-rays emitted by the interactions of high energy electrons with the material.12.14.15Science Highlight

New Materials Family on the Block

A family of single-phase materials was discovered with coexisting magnetic and electrical properties having potential for electronic applications. Read More »

Scientists devised a new way to wire a photosynthetic protein onto an electrode for integration into devices that turn sunlight into fuel. The light energy collected by the proteins (green) extracts electrons from an electrode (orangey red) through long molecules (yellow) under the proteins.12.14.15Science Highlight

How to Wire Photosynthetic Proteins to Electrodes

New approach for connecting light-harvesting proteins enhances the current produced by a factor of four. Read More »

« Previous 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 25 Next »
Last modified: 4/21/2016 11:36:50 AM