Science Highlights

Search / Filter Highlights

Filters / Search applied:   University [x]
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
Filter by Performer
Or press Esc Key to close.
close
Select all that apply.
Close
Illustration of the catalytic oxygen reduction reaction on the surface of platinum-nickel nanoframes with multilayered platinum skin structure.March 2015Science Highlights

Multimetal Nanoframes Improve Catalyst Performance

Concentrating noble-metal catalyst atoms on the surface of porous nano-frame alloys shows over thirty-fold increase in performance. Read More »

Palladium-nickel nanoparticles (top structural model) are synthesized and then exposed to reactive gases (lower right) while being probed with high-energy x-rays.March 2015Science Highlights

Optimizing Atomic Neighborhoods for Speedier Chemical Reactions

Clusters with longer separations between atoms had enhanced catalytic activity. Read More »

Depiction of carbon nanotube (gray) inserted into a cell membrane, with a single strand of DNA (gold) passing through the nanotube.March 2015Science Highlights

Spontaneous Formation of Biomimetic, Nanoporous Membrane Channels

Carbon nanotubes insert into artificial and active cell membranes, reproducing major features of biological channels. Read More »

Piezo-response force microscopy image of ferroelectric domains in hexagonal erbium manganite...February 2015Science Highlights

Direct Visualization of Magnetoelectric Domains

New microscopy technique reveals giant enhancement of coupling between magnetic and electric dipoles that could lead to novel electronic devices. Read More »

Scanning electron micrograph image of germanium nanowires electrodeposited onto an indium tin oxide electrode from aqueous solution.February 2015Science Highlights

Highly Conductive Germanium Nanowires Made by a Simple, One-Step Process

Lithium-ion batteries could benefit from this inexpensive method. Read More »

A metamaterial that consists of a two-dimensional array of U-shaped gold structures (square background in the picture) efficiently emits terahertz frequency electromagnetic waves (red axis) when illuminated by a wavelength tunable near-infrared pump laser (blue axis).February 2015Science Highlights

Metamaterials Shine Bright as New Terahertz Source

Discovery demonstrates how metamaterials may be used in non-invasive material imaging and sensing, and terahertz information technologies. Read More »

The magnetic coercivity, the resistance to change in the orientation of the magnetic domain structure, for nickel (Ni) was shown to strongly depend on the crystal structure of the underlying oxide (vanadium oxide, V2O3).February 2015Science Highlights

Giant Magnetic Effects Induced in Hybrid Materials

Magnetic property changes by several hundred percent over a narrow temperature range. Read More »

Scanning electron micrograph (top) shows the arrangement of iron-nickel nanomagnets for the newly developed “shakti” artificial spin ice lattice...February 2015Science Highlights

Artificial Spin Ice - A New Playground to Better Understand Magnetism

Experiments using novel magnetic nanostructures confirm theoretically predicted behavior – bolstering their utility as a tool for understanding complex magnetic materials. Read More »

Scanning tunneling microscopy image shows a variable width graphene nanoribbon. Atoms are visible as individual “bumps.”February 2015Science Highlights

For “Ribbons” of Graphene, Width Matters

Thin widths change a high-performance electrical conductor into a semiconductor. Read More »

Top view (left) and side view (right), illustrating the porous and layered structure of a highly conductive powder (Ni3(HITP)2), precursor to a new, tunable graphene analog.February 2015Science Highlights

Towards a Tunable Graphene-like Two-Dimensional Material

Researchers have created a porous, layered material that can serve as a graphene analog, and which may be a tool for storing energy and investigating the physics of unusual materials. Read More »