University Science Highlights

Filter by Program Additional Filters Filter by Performer
Or press Esc Key to close.
Select all that apply.
Filters / Search applied:   University [x]
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
Depiction of carbon nanotube (gray) inserted into a cell membrane, with a single strand of DNA (gold) passing through the nanotube.03.01.15Science Highlight

Spontaneous Formation of Biomimetic, Nanoporous Membrane Channels

Carbon nanotubes insert into artificial and active cell membranes, reproducing major features of biological channels. Read More »

Piezo-response force microscopy image of ferroelectric domains in hexagonal erbium manganite...02.01.15Science Highlight

Direct Visualization of Magnetoelectric Domains

New microscopy technique reveals giant enhancement of coupling between magnetic and electric dipoles that could lead to novel electronic devices. Read More »

Scanning electron micrograph image of germanium nanowires electrodeposited onto an indium tin oxide electrode from aqueous solution.02.01.15Science Highlight

Highly Conductive Germanium Nanowires Made by a Simple, One-Step Process

Lithium-ion batteries could benefit from this inexpensive method. Read More »

A metamaterial that consists of a two-dimensional array of U-shaped gold structures (square background in the picture) efficiently emits terahertz frequency electromagnetic waves (red axis) when illuminated by a wavelength tunable near-infrared pump laser (blue axis).02.01.15Science Highlight

Metamaterials Shine Bright as New Terahertz Source

Discovery demonstrates how metamaterials may be used in non-invasive material imaging and sensing, and terahertz information technologies. Read More »

The magnetic coercivity, the resistance to change in the orientation of the magnetic domain structure, for nickel (Ni) was shown to strongly depend on the crystal structure of the underlying oxide (vanadium oxide, V2O3).02.01.15Science Highlight

Giant Magnetic Effects Induced in Hybrid Materials

Magnetic property changes by several hundred percent over a narrow temperature range. Read More »

Top view (left) and side view (right), illustrating the porous and layered structure of a highly conductive powder (Ni3(HITP)2), precursor to a new, tunable graphene analog.02.01.15Science Highlight

Towards a Tunable Graphene-like Two-Dimensional Material

Researchers have created a porous, layered material that can serve as a graphene analog, and which may be a tool for storing energy and investigating the physics of unusual materials. Read More »

Scanning electron micrograph (top) shows the arrangement of iron-nickel nanomagnets for the newly developed “shakti” artificial spin ice lattice...02.01.15Science Highlight

Artificial Spin Ice - A New Playground to Better Understand Magnetism

Experiments using novel magnetic nanostructures confirm theoretically predicted behavior – bolstering their utility as a tool for understanding complex magnetic materials. Read More »

Scanning tunneling microscopy image shows a variable width graphene nanoribbon. Atoms are visible as individual “bumps.”02.01.15Science Highlight

For “Ribbons” of Graphene, Width Matters

Thin widths change a high-performance electrical conductor into a semiconductor. Read More »

Arrays of nanoribbons of lead zirconate titanate (gold, bottom) on a sheet of flexible polymer (brown) produce current pulses during each heartbeat.01.01.15Science Highlight

Power from the Heart

Advances in materials processing enable harvesting of energy from heartbeats. Read More »

Nanobionic Leaf: DNA-coated carbon nanotubes (top) incorporated inside chloroplasts in the leaves of living plants (middle) boost plant photosynthesis.01.01.15Science Highlight

Nanobionics Supercharge Photosynthesis

Carbon nanotubes and inorganic nanoparticles enhance photosynthetic activity and stability. Read More »

Last modified: 4/21/2016 11:36:50 AM