User Facility Science Highlights

Filter by Program Additional Filters Filter by Performer
Or press Esc Key to close.
close
Select all that apply.
Filters / Search applied:   SC User Facilities [x]
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
Thermal properties of a black phosphorus nanoribbon were a factor of two different along two directions in the crystal structure.06.10.16Science Highlight

Keeping Cool with a Black Semiconductor

The orientation-dependent thermal properties of black phosphorous could be used to keep microchips cool and improve their efficiency. Read More »

Scientists achieved a seamless connection between two disparate materials: a graphene sheet and boron nitride nanotube, as depicted in the bottom overlay by a gray sheet and pink and purple tube.06.10.16Science Highlight

Working Better Together: Two Materials Defining the Future of High-Speed Electronics

Junctions between conductive graphene and insulating nanotubes could lead to faster electronics and computers. Read More »

A cage-like protein (gray) called ferritin was engineered to have metal hubs (blue) on its surface.06.09.16Science Highlight

Modular Construction - on a Molecular Scale

Predictable assembly of protein building blocks result in a new class of porous materials, with potential uses ranging from efficient fuel storage to practical carbon capture and conversion. Read More »

A snapshot from a large quantum molecular dynamics simulation of the production of hydrogen molecules (green) from an aluminum-lithium alloy nanoparticle containing 16,661 atoms (represented by the silver contour of charge density) and dissolved charged lithium atoms (red).06.09.16Science Highlight

Towards Eco-friendly Industrial-Scale Hydrogen Production

Atomic-scale simulations predict how to use nanoparticles to increase hydrogen production. Read More »

Absorption of sunlight in silicon solar cells results in losses due to heat from “hot” photo-excited electrons.06.09.16Science Highlight

Taking on the Heat in Solar Cells: New Calculations Show Atomic Vibrations Hurt Efficiency

Theoretical modeling of energy loss in solar cells may lead to more efficient materials to convert sunlight to electricity. Read More »

The cross-section shows key features of a new solar cell architecture.06.08.16Science Highlight

Keep it Simple: Low-Cost Solar Power

A simplified architecture leads to efficiencies rivaling conventional silicon solar cells. Read More »

Nanometer-sized junctions between two types of two-dimensional semiconductors could replace conventional wider three-dimensional junctions.06.08.16Science Highlight

Patterning Smaller Junctions for Ultrathin Devices

Patterned arrays of nanometer-sized connections in two-dimensional semiconductors could enable ultrathin integrated circuits for smartphones and solar cells. Read More »

The crystallized oxide (lighter regions) spelling the word “small” was “printed” on a non-crystallized layer (darker gray) by a well-controlled beam in an electron microscope.06.07.16Science Highlight

Atomic Sculpting with a Microscope

A new tool allows atomic 3D printing. Read More »

Two-dimensional snapshot used to reconstruct the 3D image of a particle.06.07.16Science Highlight

Saturday Night at the Movies: 3D Sneak Preview of Dancing Platinum Particles at Atomic Resolution

Three-dimensional structure of nanocrystals in solution determined with atomic resolution using a new technique. Read More »

Progressively magnified images of graphene nanoribbons grown on germanium semiconductor wafers.06.07.16Science Highlight

Growing Graphene Ribbons in One Direction

New method to fabricate graphene nanoribbon arrays on semiconductor wafers turns semimetal into semiconductor. Read More »

Last modified: 4/21/2016 11:36:52 AM