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Abstract

This report details the findings and recommendations of the DOE ASCR Exascale Mathematics
Working Group that was chartered to identify mathematics and algorithms research opportunities
that will enable scientific applications to harness the potential of exascale computing. The working
group organized a workshop, held August 21-22, 2013 in Washington, D.C., to solicit input from
over seventy members of the applied mathematics community. Research gaps, approaches, and
directions across the breadth of applied mathematics were discussed, and this report synthesizes
these perspectives into an integrated outlook on the applied mathematics research necessary to
achieve scientific breakthroughs using exascale systems.
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Executive Summary

High fidelity modeling and simulation of physical systems is a critical enabling technology area
for the U.S. Department of Energy (DOE), required for addressing some of the most challenging
problems in energy, the environment and national security. The importance of continued advances
in this area cannot be overstated. As a result, DOE is aggressively pursuing an exascale com-
puting program that includes applied mathematics research focused on the unique challenges and
opportunities present at this scale.

Exascale capabilities promise unprecedented potential for high fidelity, high confidence, and
optimal solutions to complex multiscale, multiphysics problems at the heart of DOE’s mission.
Unlocking the potential of exascale computing requires the development of the next generation of
computational models in order to satisfy the accuracy and fidelity needs for targeted problems.
Specifically, more complex physical models must be developed to account for more aspects of the
physical phenomena being modeled. Furthermore, for the physical models being used, increases in
the resolution of the system variables are needed in order to improve simulation accuracy, which in
turn places higher demands on computational hardware and software.

In order to meet DOE’s science, design, and decision support needs, the computational capa-
bility of the fastest supercomputers must continue to grow. However, the transition from current
sub-petascale and petascale computing to exascale computing will be at least as disruptive as the
transition from vector to parallel computing in the 1990s. Driven mostly by power constraints,
exascale-class machines (capable of 10'® floating-point operations per second or more) will see a
massive increase in the number of computing units (into the millions), in the form of homogeneous
cores or heterogeneous mixtures of multipurpose CPUs and specialized processing units. Memory
and bandwidth will not increase as quickly as core count, and data transfer latencies will be further
exposed. The shear number of components increases the potential for more frequent faults and
failures.

In preparation for exascale systems, the DOE Office of Science Advance Scientific Computing
Research (ASCR) program has sponsored a series of workshops leading to comprehensive reports on
many of the challenges and opportunities. Nevertheless, the role of applied mathematics in the ex-
ascale computing effort has not been sufficiently explored. It is widely recognized that, historically,
numerical algorithms and libraries have contributed as much to increases in computational simu-
lation capability as have improvements in hardware. Mathematics permeates simulation; and the
expected developments in computer systems will require a holistic reconsideration of all aspects of
solving a problem, including formulation, discretization, scalable solvers, analysis, and software. In
addition, applied mathematics has a role to play in exascale system software, providing algorithms
and models for capabilities such as dynamic resource allocation.

This report details the findings and recommendations of the DOE ASCR Exascale Mathematics
Working Group that was chartered to identify mathematics and algorithms research opportunities
that will enable scientific applications to harness the potential of exascale computing. The working
group organized a workshop, held August 21-22, 2013, in Washington, D.C., to solicit input from
over seventy members of the applied mathematics community. Research gaps, approaches, and
directions across the breadth of applied mathematics were discussed. This report synthesizes these
perspectives into an integrated outlook on the applied mathematics research necessary to achieve
scientific breakthroughs using exascale systems.

Concisely, the DOE Advanced Scientific Computing Research Program needs to take action
to build a more explicit research program in applied mathematics for exascale computing. The
necessary actions are summarized in five key recommendations:
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. DOE ASCR should proceed expeditiously and with high priority with an exascale mathe-

matics initiative so that DOE continues to lead in using extreme-scale computing to meet
important national needs.

. A significant new investment in research and development of new models, discretizations,

and algorithms implemented in new science application codes is required in order to fully
leverage the significant advances in computational capability that will be available at the
exascale. Many existing algorithms and implementations that have relied on steady clock
speed improvements cannot exploit the performance trends of future systems.

. Not all problems require exascale computation, and yet these problems will continue to require

applied mathematics research. Thus, a balance is needed in the DOE Applied Mathemat-
ics Research portfolio that provides sufficient resources to realize the potential of exascale
simulation while preserving a healthy base research program.

. An intensive co-design effort is essential for success, where computer scientists, applied mathe-

maticians, and application scientists work closely together to produce a computational science
discovery environment able to exploit the computational resources that will be available at
the exascale.

. DOE ASCR must make investments to increase the pool of computational scientists and

mathematicians trained in both applied mathematics and high-performance computing.

The majority of this report makes the case for these recommendations, based on a detailed ex-
planation of the role of applied mathematics in scientific simulation and the associated research
challenges motivated by the drive toward exascale computing.

Applied mathematics research is a critical component of the overall exascale computing enter-

prise in DOE. Enhancing the national capabilities in advanced mathematical modeling, numerical
algorithms, and software will have a major impact on our future national research capacity and
an international impact in the ever-increasing number of domains within which high-performance
computing is, or is set to become, a core activity. It is essential that DOE make strategic invest-
ments now in high-performance computing algorithms and software in order to enable successful
use of exascale resources in support of its mission and to safeguard our ability to continue to lead
the world in this field.

v
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1 Introduction

The U.S. Department of Energy (DOE) is tasked with addressing some of the most challenging
problems in energy, the environment, and national security. Addressing these challenges requires
simulation of complex multiscale, multiphysics phenomena and may also involve mathematical
optimization and uncertainty quantification to answer broader design and decision questions. How-
ever, even with today’s mathematical algorithms and petaflop supercomputers, many extreme-scale
science problems are still intractable.

A science-based case for investment in exascale computing has been established [21]. Over the
past five years, the Scientific Grand Challenge Workshop Series has produced a string of reports
on the open research questions in climate science [23], high energy physics [22], nuclear physics [30]
and energy [29], fusion energy [27], materials science and chemistry [24], biology [26], and national
security [28]. Advancing science in these key areas requires the development of the next-generation
computational models to satisfy the accuracy and fidelity needs of targeted problems. The potential
impact of these models on computational science is twofold. First, scientists will be able to account
for more aspects of the physical phenomena being modeled. Second, increases in the resolution of
the system variables, such as the number of spatial zones, time steps, or particles, will improve
simulation accuracy. Both of these impacts will place higher demands on computational hardware
and software.

To meet these science needs, the computational capability of the fastest supercomputers must
continue to grow. However, the transition from current sub-petascale and petascale computing to
exascale computing will be at least as disruptive as the transition from vector to parallel computing
in the 1990s. Driven mostly by power constraints, exascale-class machines will see a massive
increase in the number of computing units, whether homogeneous cores or heterogeneous mixtures
of multipurpose CPUs and specialized processing units. Memory and bandwidth will not increase
as quickly as core count, and data transfer latencies will be exposed further. The shear number of
components—for instance, millions of cores—increases the potential for more frequent faults and
failures. The proposed exascale architectures will present significant challenges for scalable software
development and deployment.

Accordingly, the DOE Office of Science Advance Scientific Computing Research Program (ASCR)
has started to prepare for the exascale computing challenges. Workshops have been held and reports
have been written on many of the computer science challenges, including architectures [25, 32], oper-
ating and runtime systems [37], programming challenges [34], fault management [36], development
and performance measurement tools [35], data management and analysis [33], and performance
modeling and simulation [38]. The 2010 Advanced Scientific Computing Advisory Committee (AS-
CAC) Exascale Report [21] found that an integrated “co-design” effort will be essential for success,
where system architects, application software designers, applied mathematicians, and computer sci-
entists work closely together to produce a computational science discovery environment that fully
leverages the significant advances in computational capability that will be available at the exascale.

Nevertheless, the role of applied mathematics in the exascale computing effort has not been
sufficiently explored in and of itself. It is widely recognized that, historically, numerical algorithms
and libraries have contributed as much to increases in computational simulation capability as have
improvements in hardware. The expected developments in computer systems will place an even
greater focus on algorithms as a means of increasing our computational capability. Significant
new model development, algorithm redesign, and science application code reimplementation will
be required in order to exploit effectively the power of exascale architectures. Some of these issues
have been identified in previous reports [3, 31, 33|, but, to date, no assessment has focused solely on
the challenges and opportunities for research in applied mathematics for exascale simulation. This
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report addresses this deficiency by examining the role of applied mathematics research throughout
the modeling and simulation process and by identifying important topics in need of more research.
1.1 Charter and Goals

In January 2013, ASCR formed an Exascale Mathematics Working Group (EMWG) to identify
mathematics and algorithms research opportunities that will enable scientific applications to harness
the potential of exascale computing.

The EMWG charter, written by the working group and approved by ASCR, was to do the
following;:

e Analyze potential gaps in current thinking about applied mathematics for the exascale;
e Identify new algorithmic approaches that address exascale challenges;

e Identify mathematics to address new scientific questions accessible at exascale, especially
through integration across applied mathematics subdisciplines;

e Identify a holistic, co-design approach for applied mathematics exascale research that more
directly involves a dialogue with application scientists and computer scientists; and

e Submit a report of the findings to the DOE Office of Science.

This charter reflected the desire of the working group to consider the breadth of applied mathematics
activities necessary for extreme-scale science, from mathematical modeling through discretization
and solvers to analysis and decisions.

1.2 Membership

The EMWG comprised ten research scientists from the DOE national laboratories:

’ Name ] Affiliation
John Bell Lawrence Berkeley National Laboratory
Luis Chacon Los Alamos National Laboratory
Jack Dongarra* | Oak Ridge National Laboratory
Rob Falgout Lawrence Livermore National Laboratory
Michael Heroux | Sandia National Laboratories
Jeff Hittinger* Lawrence Livermore National Laboratory
Paul Hovland Argonne National Laboratory
Esmond Ng Lawrence Berkeley National Laboratory
Clayton Webster | Oak Ridge National Laboratory
Stefan Wild Argonne National Laboratory
*co-chairs

Karen Pao, an ASCR program manager for the applied mathematics subprogram, also participated
as the ASCR point of contact for the working group.

1.3 History and Timeline

The EMWG was formed in early January 2013 at the request of William Harrod, director of the
ASCR Division of Computational Science Research and Partnerships. The initial meeting of the
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working group occurred in late January via teleconference; the initial effort was to define a charter
and to plan a course for gathering information. Most meetings were held as teleconferences, but the
first face-to-face meeting of the working group occurred at the STAM Conference on Computational
Science and Engineering in late February 2013. To obtain information, the working group decided
to solicit white papers from the applied mathematics community and to host a workshop to engage
the community further. In addition, the EMWG decided to engage in a series of fact-finding
teleconferences with domain sciences from Office of Science areas; these teleconferences occurred
from April through June. Position papers were selected in May 2013; and the workshop, organized
around these papers, was held August 21-22, 2013, in Washington, D.C. This report was written
during the fall of 2013 and submitted to ASCR in February 2014.

1.4 Fact-Finding Meetings

Solvers and solver libraries are a mainstay of scientific computing and justifiably a core emphasis of
applied mathematics research. However, mathematics plays a pervasive role extending “upsteam”
in the modeling process. The mathematical formulation of the problem and its discretization are
also important steps in simulation that impose constraints and challenges on the “downstream”
linear and nonlinear solvers. Thus, the EMWG decided to investigate model formulation within
the context of the problems facing DOE science application areas. The goal was to better under-
stand the science needs—the open questions different science domains are trying to answer through
simulation—driving the push to exascale, without limiting consideration to current practices. Many
previous grand challenge reports focus heavily on building from the current state of the art without
questioning whether that state is an artifact of the evolution of the field. The push to exascale not
only may be an opportunity to change this but also may benefit from a fundamental rethinking of
how the problems are posed.

The EMWG hosted six teleconference presentations by scientists representing the following
areas:

‘ Topic ‘ Speaker ] Affiliation
Nuclear (Fission) Energy Marvin Adams Texas A&M University
Atmospheric Science William Collins LBNL
Correlated Electron Systems | Thomas Maier ORNL
Fusion Energy Martin Greenwald | MIT
Biofuels Jeremy Smith ORNL
Materials Science Paul Kent ORNL

Perspectives formed from these discussions are the basis of Section 2 of this report.

1.5 Workshop

To stimulate a dialogue with the greater applied mathematics community, in May 2013, the EMWG
issued a call for position papers on exascale computing research challenges in applied mathemat-
ics. Seventy-five position papers were received, and from these forty were selected for presen-
tation. Workshop details, including the position papers, agenda, and attendees, are provided
in the appendices. Electronic versions of the position papers are available for download from
https://collab.mcs.anl.gov /display /examath.

The EMWG’s Exascale Mathematics Workshop was held August 21-22, 2013, in Washington,
D.C., with over seventy DOE laboratory researchers, academics, and government program managers
participating. Several members of the European applied mathematics community were also present.

APPLIED MATHEMATICS RESEARCH FOR EXASCALE COMPUTING 3
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Position papers addressed topics such as scalable mesh and geometry generation, multiphysics and
multiscale algorithms, in situ data analysis, adaptive precision, asynchronous algorithms, optimiza-
tion, uncertainty quantification, and resilience. Each position paper was allotted ten minutes for
presentation, and a substantial amount of time was devoted to group discussions about the ideas
and issues raised by the presenters. After the workshop, a web-based survey was created to obtain
additional feedback from the workshop attendees.

1.6 Report Organization

In the following section, we consider three motivating examples of the types of extreme-scale sci-
ence problems that exascale computing may enable researchers to address; these exemplar science
needs represent the forces from above that will affect the mathematics involved in scientific sim-
ulation codes. In Section 3, we briefly review the challenges of exascale computing as imposed
by the expected changes in computational hardware; these challenges represent the forces from
below on the mathematics involved in scientific simulation codes. We use a top-down analysis in
Section 4 to identify research opportunities in applied and computational mathematics for exascale
computing. The interdependencies between mathematics research and other exascale computing
research activities are discussed in Section 5. The report concludes in Section 6 with findings and
recommendations. Information on the workshop that informed this report, including the submitted
white papers, workshop attendees, and workshop agenda, are provided in the appendices.

2 DMotivating Science and the Role of Applied Mathematics

The science challenges that motivate the need for exascale-class computing resources have been
well-documented [22-24, 26-30]. Two common themes of these science challenges are the extreme
ranges of temporal and spatial scales and the complex nonlinear interactions of multiple physical
processes. Predictive simulation capabilities are the goal, so that computational results can be used
not only to increase scientific knowledge and understanding but also for design and decision. For
context, we briefly review three such science areas of relevance to the DOE—combustion, climate,
and materials—and highlight the associated mathematical challenges within each area.

2.1 Combustion

One area where exascale computing can make significant impact is the design of next-generation
combustion systems such as high-efficiency, low-emission diesel engines that can burn new biodiesel
fuels. On the surface, modeling the combustion process in a diesel engine involves the simulation
of high-pressure turbulent reacting flow in a complex moving geometry. While this is certainly a
requirement, a number of additional physical processes need to be modeled in order to simulate
a diesel engine. Fuel is injected into the engine in a high-pressure, high-velocity liquid jet. The
dynamics of this jet, which plays a critical role in engine performance, is a complex multiphase
phenomenon where extremely fine-scale effects play a key role in the breakup and atomization of the
fuel. The combustion process forms particulate soot as an intermediary in the combustion process.
The formation and subsequent burnout of soot are other multiphase effects in which molecular-level
processes govern the behavior of the system. Because soot is optically thick, radiative processes
enter into the picture as well, combining with conductive heat transfer to the walls to define the
thermal environment within the cylinder. High-fidelity simulation of this type of system is beyond
the capability of current petascale systems.

4 APPLIED MATHEMATICS RESEARCH FOR EXASCALE COMPUTING



These elements represent one aspect of diesel engine simulation; however, a number of other
issues also play a critical role in predictive simulation of an engine. Diesel fuels are complex hydro-
carbons whose chemical, thermodynamic, and transport properties are needed to perform a simula-
tion. Reaction kinetics and thermodynamic properties for these types of complex molecules are not
well known. Furthermore, even if the kinetics were fully understood, simulations with a comprehen-
sive chemical mechanism would be infeasible. Transport properties are also not well understood,
particularly in the high-pressure environment associated with diesel combustion. Quantifying the
fidelity of a diesel engine simulation will require detailed uncertainty quantification to elucidate the
uncertainty in predictions resulting from uncertainties in the fluid properties used in the simulation.
These issues are further complicated by the need to model a variety of candidate biodiesel fuels
in addition to traditional diesel fuel. Ensembles of simulations will be required in order to link
experimental data to fuel properties and improve the predictive capability of simulations.

The simulation of a diesel engine is a complex multiphysics problem that needs to incorporate
the effect of uncertainty across a range of different submodels and establish linkages between models
and experimental data. However, the ability to perform simulations of a diesel engine with quan-
tified uncertainty is only one step toward the actual goal, which is the design of a better engine.
Designers would like to find optimal designs for fuel injectors and their placement in the cylinder,
the shape of the cylinder bowl, and the placement and geometry of valves. These design problems
are multiobjective: they need to balance fuel efficiency with emissions across a range of potential
fuels and operating conditions. In addition, there are inherently stochastic because of cycle-to-cycle
variability in the engine and of variations in the fuel characteristics. Solving these optimization
problems will require methodologies for constructing rich hierarchies of models of quantified fidelity,
combined with optimization algorithms that can utilize models of varying fidelity during the opti-
mization process. The issues in diesel engine design are not simply computational power. A rich
set of new mathematical tools is needed to enable the design of next-generation engines.

2.2 Climate

Climate modeling is another application where exascale computing has the potential to make sig-
nificant impact. At a basic level the goal of climate modeling is to estimate the response of global
temperature to increases in greenhouse gases. The full complexity of the problem becomes manifest
when one tries to quantify how the climate system would respond to an increase in temperature.
Climate scientists would like to answer questions such as what temperature rise is required to trig-
ger a major climatic event (e.g., melting of the Antarctic ice cap or an irreversible shift in ocean
circulation); how extreme weather patterns will change; and how large stores of carbon will respond
to global warming.

As with combustion, answering these questions is not just a matter of harnessing more computer
cycles; substantive mathematical advances are needed to address these problems. Climate models
are complex multiphysics problems. They combine models for atmospheres, oceans, ice sheets, land
surfaces, and the biosphere. Each of these models poses a challenging mathematical problem in its
own right. In many cases, asymptotic convergence of the models has not been established. Further-
more, important questions arise about how to couple these models computationally. What are the
key requirements to ensure that the combined model produces a stable and accurate prediction?
How do errors in one model impact the fidelity of other components of the model? How accurately
must each component be treated to ensure the fidelity of climate predictions?

Of equal if not greater importance is the multiscale character of many of the models used for
climate simulation. In many cases, the basic physical processes are understood at small scales, but
reliable techniques for representing those processes are larger scales are not known. For example,
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the fundamental processes for moisture physics in clouds are well understood, but it is not known
how to represent ensembles of clouds at the scales required for climate simulation. There is no
analog of statistical mechanics for clouds. Currently, it has proven challenging to link models
of processes operating at the scale of climate models to benchmark models and measurements of
these same processes operating at their native scales. The lack of systematic methodology for
deriving representations of key processes as a function of scale is a fundamental barrier to progress.
Developing the mathematical tools to address these types of scale-dependent models will require
significant advances. Many of the processes that need to be modeled are highly nonlinear, and
there is often no clear scale separation. Consequently, models based on a Markovian assumption
will not be adequate. Models that can represent the physics across a range of scales are likely to
be stochastic and include memory effects.

Another mathematical challenge in climate modeling is how to most effectively utilize observa-
tional data to improve predictions. Can we develop data assimilation schemes that improve model
performance? What does a given set of observations tell us about the underlying physical pro-
cess? What are the most effective quantities to measure to understand the connections amongst
the different components of an earth system model? Answering these questions will require the
development of new ideas at the interface of Bayesian statistical analysis, sampling methodologies,
and optimization.

Climate models are not only used for basic scientific studies; they are also used for assessments
needed by policy makers. However, precise deterministic prediction of long-term climatic trends
is not feasible. In this type of setting, a single computation is not sufficient. Rather, climate
scientists need to quantify the potential range of possible behaviors. In some cases, the goal is not
an estimation of mean behavior but an assessment of the possibility of rare but catastrophic events.
Obviously, these types of studies need to include estimates of uncertainties in the predictions.

2.3 DMaterials Science

The development of new novel materials plays a key role in solving technological challenges in
areas such as artificial light harvesting to produce liquid fuels, energy storage in next-generation
battery technologies, metal organic frameworks, zeolites, and organic photovoltaics. Advances in
computational materials approaches are making inroads predicting material properties, identifying
novel and potentially useful materials, and guiding the functional materials design process at an
atomistic scale using petascale-computing resources. The need for exascale within computational
materials sciences is driven by the need to predict and understand the behavior of new materials
from the atomistic scale to the device level itself. Computational materials science at exascale will
be key to enable advances in high-tech materials that will move us toward a sustainable, safe, and
renewable energy future.

Predicting the behavior of heterogeneous materials with significant structural disorder and
chemical complexity in macroscopic devices requires the modeling of emergent (mesoscale) proper-
ties and processes that bridge the many length (nanometer to microns) and time (femtoseconds to
minutes) scales. Modeling the emergent properties and the multiphysics nature of various processes
of complex systems at disparate length and time scales calls for a multiscale approach that can
describe transport of ions and electrons, synthetic self-assembly of structures, electrochemical re-
actions at interfaces, heat generation and transfer, and structural deformation and stress. In order
to bridge various length scales, it is essential to link continuum and other microscale models with
atomistic and even electronic descriptions by providing correct up-scaling of interactions for coarse
graining as well as down-scaling to perturb nanoscale and electronic environments.

Furthermore, in order to predict the transient behavior of materials, such as their structure
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and electrical, chemical, and thermal properties, it is essential to understand their behavior under
real-world conditions. For example, modeling the behavior of lithium from the nanoscale to the
microscale during the charging and discharging cycles of lithium-ion batteries can provide insight
into the modes of failure and degradation of battery materials and can drive the design of better
batteries. charge carrier diffusion, crack formation, and significantly longer timescales. Although
a number of mathematical models have been developed to accomplish these goals, the numerical
solution of the underlying equations in these models remains challenging.

Accurate approaches for describing the large, complex, heterogeneous nature of materials and
the physical processes at the mesoscale are expected to be a truly exascale computing challenge [24].
To capture mescoscale properties of complex materials requires scientists to study systems consisting
of millions of atoms. Another driving force in computational materials science requiring exascale
resources is the enormous size of the search space from which optimal materials can be chosen. If
one considers hundreds of thousands of potential materials that each need to be modeled accurately
using teraflop or sub-petaflop simulations, the need for exascale becomes clear. The many-body
nature of microscopic models makes the complexity of the computation grow rapidly with respect
to the number of degrees of freedom. For ground state calculations, approaches based on density
functional theory typically scale cubically with respect to the number of atoms, n. The scaling
for wavefunction methods, such as the coupled cluster method, is even higher. For excited states
calculations, methods for both extended systems and molecules have at least O(n?*) complexity and
in many cases can go up to O(n%). For n = 1,000, which is still relatively small, this complexity
amounts to O(10'®) operations for a single calculation.

As an example of the many mathematical issues that enter into these multiscale, multiphysics
materials problems, consider coupling a microscopic model to an atomistic or continuum model
using a microscopic simulation to fit or estimate parameters contained in a higher-level model. The
estimation process may require solving a system of tightly coupled nonlinear differential/integral
equations iteratively. It may also require collecting information from multiple instances of micro-
scopic simulations that can be carried out in parallel. Furthermore, uncertainty quantification and
sensitivity analysis are important tools that could be brought to bear for tuning model parameters
and making them adaptive to configuration and environment changes. Iterative solver accelera-
tion techniques that can take advantage of physics-motivated preconditioner are highly desirable
for solving both the coupling equations and nonlinear equations used in a microscopic model. In
order to elucidate the dynamic behavior of the material, efficient and stable time-evolution schemes
are necessary. In order to bridge the gap among different scales, multiresolution and multiscale
methods based on asymptotic expansion, coarse graining, and statistical sampling are frequently
used. All these mathematical techniques must be able to take advantage of the vast amount of
computational resources and extreme concurrency available at the exascale.

3 Challenges at Exascale

Exascale will provide the computational power needed to address the important science challenges
in DOE’s mission, but that capability will come at an expense of a dramatic change in architectures.
Numerous reports over the past five years have documented the technical challenges and the non-
viability of the existing computer designs to reach exascale [25, 32, 57]. For context, we briefly
summarize these challenges here.

Power: Power is the driving force behind the changes in supercomputer architecture. In
some sense, exascale computing should really be thought of more as “low-power, high-performance
computing.” To continue to design supercomputers using standard commodity technologies is not
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sustainable; the power requirements of such a machine rapidly become prohibitive [57]. The goal
has therefore been set to achieve exaflop performance with a power limit of 20 MW. This restriction
has direct implications for the structure and organization of the hardware components as well as
algorithms. It is conceivable that the energy used by a simulation may replace the CPU time as
the cost metric for supercomputer use; hence, numerical algorithms may need to become more
power-aware.

Extreme Concurrency: From hand-held devices to supercomputers, processor clock speeds
have stagnated because of power density limitations. Instead, increased performance is being
obtained by increasing the number of processing elements on a chip (multiple cores) and supporting
threading. It is estimated that exascale machines will have two to three orders of magnitude of
parallelism over petascale computer levels, with much greater parallelism on nodes than is available
today. The bulk-synchronous execution models that dominate today’s parallel applications will
not scale to this level of parallelism. New algorithms need to be developed that identify and
leverage more concurrency and that reduce synchronization and communication. One approach
will be through dynamically scheduled task parallelism; but this will introduce a new challenge,
reproducibility, that will make determinations of code correctness more difficult.

Limited Memory: Without a significant change in technology, memory density is not expected
to increase at the same rate as the number of processing units. Again, power is a limiting factor;
current volatile RAM technology, for example, consumes a great deal of power to maintain its state.
Thus, while the amount of memory per node will increase, the amount of memory per core will
decrease. Many current algorithms will thus be memory constrained and will need to be redesigned
to minimize memory usage.

Data Locality: Similarly, memory bandwidth is not expected to increase at the same rate
as the number of processing units. Consequently, on-node memory bandwidth will increase, but
the bandwidth per core will actually decrease. Interconnect transfer rates are also not expected to
increase at the same rate as the number of cores. In addition, the energy used for a double-precision
flop is expected to decrease by roughly an order of magnitude, which will expose differences in the
energy cost not just of off-chip data motion but of on-chip transfers as well. Future systems may
use a variety of different memory technologies including nonvolatile memory, stacked memory,
scratchpad memory, processor-in-memory, and deep cache hierarchies to try to ameliorate some of
these challenges. Algorithms will need to be more aware of data locality and seek to minimize data
motion, since this will be a more significant energy cost than will computation.

Resilience: Because of the shear number of components, hardware failures are expected to
increase on exascale computers. Traditional checkpoint-restart recovery mechanisms are too ex-
pensive in terms of both the time and energy with bulk synchronization and I/O with the file
system. Such global recoveries could conceivably take more time than the mean time between
failures. Local recovery mechanisms are required that leverage the mathematical properties of
the algorithms in the application. In addition, efforts to reduce power by computing with lower
threshold voltages and other environmental disturbances may lead to more soft errors that may
not be caught by the hardware. Increased fault rates will affect all hardware in the stack, but
in particular applications may need to be fault-aware and use algorithms to make them tolerant
to certain types of faults. The nondeterministic nature of failure and recovery, if occurrences are
sufficiently frequent, will lead to nonreproducibility and make code correctness difficult to assess.

These are the key architectural changes expected to be necessary to build an exascale machine.
Such architectural changes will force changes throughout the software stack in ways that can-
not be completely hidden from the application and its associated numerical algorithms. Through
model and algorithm development and design, mathematicians will need to address the new con-
straints these changes will affect. Particular constraints include the presence of distinct comput-
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ing/architectural layers, leading to multiple levels of parallelism; severe penalization of data motion
across architectural layers; the lack of hardware resiliency (in the form of both soft and hard errors)
in some or all of the computing layers; the maximum exploitation of asynchrony in the implemen-
tation; the utilization of mixed-precision floating-point operations; and the maximization of the
operational intensity.

4 Current and Future Research Directions

Several scientific applications within the DOE mission space require resources at the exascale (and
potentially beyond). As demonstrated by the examples in Section 2, some of these needs arise
from the desire to solve on larger-scale simulation domains, to solve for longer simulation times,
or to solve with greater accuracy or resolution of finer spatial scales. Other needs stem from the
desire to add additional or more detailed physical phenomena to increase the physical fidelity. Still
other requirements stem from the need for meta-analyses such as sensitivity analysis, uncertainty
quantification, and mathematical optimization.

What must be recognized, however, is that mathematics permeates the activities from the
formulation of the problem to the analysis of the results (and, in fact, beyond). The realm of math-
ematical research necessary to make exascale computing a successful endeavor is not merely isolated
to numerical solvers as implemented in software libraries. Computers do not “solve physics”; after
all, computers fundamentally perform only a small set of logical operations.

Physical principles and problems are first expressed as mathematical models that are not, in
general, in a suitably discrete algebraic form. Thus, these models must be discretized, typically
leading to coupled nonlinear algebraic systems of equations, which then require robust numerical
solvers. Efficient analysis of the resulting discrete solutions and verifying their correctness both
require the application of additional mathematical techniques. Thus, analogous to the concept of
the software stack, there is effectively a mathematics stack for simulation:

Problem Formulation, or Defining the question(s) to be answered

e Mathematical Modeling, or Fxpressing the problem mathematically

Discretization, or Expressing the mathematical model discretely

Scalable Solvers, or Solving the discrete system

e Data Analysis, or Understanding the results

Resilience and Correctness, or Trusting the results

In addition, there are common operations required for system management, such as dynamic re-
source allocation, that can be posed mathematically, for example, as optimization problems.

We will use this framework to organize our discussion of potential research directions for exascale
computing. We emphasize that models and associated algorithms are not selected in isolation but
must be evaluated in the context of the intended computer hardware environment. Specifically,
we will discuss each of the above topics, the ways in which the challenges introduced by exascale
architectures hardware (Section 3) will need to modify the current approaches to each, and some
promising ideas that can address some or all of the exascale challenges.
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4.1 Problem Formulation

FExascale computers offer a dramatic po-
tential to change the questions we ask, im-
proving our simulation capabilities from
providing a single solution for a given set
of boundary and initial conditions to pro-
viding an optimal solution with error bars.
Future leadership-class computers will of-
fer several orders of magnitude in poten-
tial performance improvement. How to
best use this increased capability varies
greatly across problem domains of inter-
est to DOE. In some areas, the entire

Systems of Systems

Optimization under Uncertainty

Quantify Uncertainties/Systems Margins

Optimization of Design/System

Robust Analysis with Parameter Sensitivities

Accurate & Efficient Forward Analysis

Forward Analysis

exascale system can be consumed by in-
creased fidelity of a single forward simu-
lation, whether that is through increased
resolution (e.g., DNS of turbulent flows)
or through more physically accurate (and
complex) models that perhaps were previously considered infeasible. In other areas, forward sim-
ulations are already efficient and high-fidelity, leading naturally to the next simulation maturity
levels [63] of optimization and uncertainty quantification (UQ), as depicted in Figure 1. Because of
the new challenges and opportunities provided by these latter use cases, we choose to discuss them
in more detail; higher-fidelity forward simulations will still represent a significant component of the
workload on exascale machines, requiring very fast turnaround and support for new formulations,
but this use case is better understood.

Figure 1: One depiction of the relationship between simulation
capabilities. Each stage requires greater performance and error
control of prior stages.

Mathematical optimization and UQ will increasingly be used in the exascale era, especially
formulations in which these broader problems are tightly coupled to the underlying forward simu-
lation model. Instead of UQ and optimization implemented as outer loops around the traditional
forward simulation, techniques more tightly coupled to the forward solution strategy could provide
opportunities for reuse, communication hiding, and even vectorization across multiple solutions.
However, such formulations demand more from the underlying forward problem solvers, for exam-
ple, leading to problems with multiple, simultaneous right-hand sides or to families of related linear
systems with similar structure and spectral properties. In order to impact future codes, research
is required now to develop, explore, and understand the myriad algorithmic design trade-offs.

4.2 Mathematical Modeling

With the goals of simulation well-defined, the first challenge is the mathematical formulation of the
problem. In the context of scientific simulation, this necessitates the formulation of one or more
mathematical models of the physical processes that dictate the physical system behavior. These
physical laws and phenomena are expressed as well-posed systems of equations. In many simple
cases, these equations are well-established (e.g., Navier-Stokes, Maxwell’s equations); in more com-
plex problems, a suitable mathematical model may be an open research question. As highlighted in
Section 4.1, exascale will also bring increased scope for optimization and uncertainty quantification
and mathematical formulations of the questions asked in optimization and uncertainty quantifica-
tion. Selecting the appropriate mathematical model of the physics for and the level of coupling
with these higher-level algorithmic demands is itself a modeling challenge.
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4.2.1 Modeling Physical Processes

Within the DOE mission space, mathematical models often involve coupled physical phenomena—
they are inherently multiphysics. In addition, there are many potential levels of description from
the atomic up to cosmological scales. The level of fine-grained physical fidelity in models depends
on the importance of the details of the finest-scale processes on the macroscopic time and length
scales, but it is often limited by the available computational resources.

In the DOE applications that drive the need for exascale computing, nonequilibrium effects
at the atomic scale and microscale (e.g., non-Maxwellian distributions of particles in plasmas, or
cracks and voids in materials) are important. Fundamentally, we have classical and quantum mod-
els of atoms and molecules and could, in principle, attempt to simulate from this scale. However,
such a model is an N-body problem with far too many degrees of freedom to simulate at macro-
scopic (engineering) scales, even with exascale resources. To manage the level of complexity and
scale disparity of first-principles models, one must resort to dividing and conquering the scales by
formulating reduced (or coarse-grained) models that target the appropriate level of description for
a given set of dynamics. This approach naturally leads to multiscale or scale-bridging models, in
which a coupled hierarchy of models is considered. Coarser-grained representations can be coupled
sequentially or concurrently with finer-grained ones. Many approaches are available to derive such
coarse-grained descriptions; we provide examples later in this section.

The advent of exascale computing is an opportunity to rethink the formulation and implementa-
tion of mathematical models to simulate physical systems. Exascale resources will make realizable
the use of some models that were previously considered intractable (i.e., more complex, but more
physically correct models). Systematic techniques that can construct coarse-grained models when
such models are unknown can lead to stochastic partial differential equations, a field in which
many opportunities exist for numerical algorithms research. Multiscale models that incorporate
and couple descriptions across scales will also become more prevalent. Such multiscale models may
provide novel opportunities for accelerating numerical solution by leveraging the many levels of
description. We will discuss in more detail these topics, as well as the trade-offs between particle
and continuum representations. Before proceeding, however, we comment on the limitations on
mathematical models imposed by physical constraints.

Models must respect the physics. The mathematical properties of the models that make
them difficult to solve numerically and in parallel most often derive from the physics. Hence, when
considering a suite of model formulations for a given physical problem in the context of exascale
computing, one must be careful not to trade physical relevance for parallel expediency. For instance,
the propagation of information through a system is dictated by the underlying physics. If the details
of this propagation are important, they must be resolved. If the details are unimportant, other
mathematical models or numerical techniques can be used, but these models still capture the correct
physical asymptotics.

A classic example is conductive heat transfer, which is typically described macroscopically by
the parabolic heat equation. In a parabolic model, information propagates with apparent infinite
speed. Numerically, the discrete system is globally coupled. Of course, this is an asymptotic
approximation. Physically, the information propagates at a finite speed, but it appears effectively
infinite over the scales considered. Alternative hyperbolic-relaxation models exist; but in order to
take advantage of their locality (which benefits their parallel implementation), either the very fast
time scales would need to be resolved (an expensive proposition) or a clever asymptotic-preserving
scheme would be required to step over these fast time scales (generally a nontrivial exercise).

Alternative models may have advantages over those commonly used today, but the trade-offs
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need to be considered carefully. In the end, important physical processes must be respected, a
requirement that constrains the behavior of the solutions to the mathematical models and ultimately
the numerical techniques used to approximate these solutions.

Scale-bridging models. A class of mathematical models particularly suitable for exascale
computing is scale-bridging algorithms. Such algorithms attempt to bridge disparate time and
length scales in various ways, while at the same time avoiding a brute-force approach that would
render the problem unmanageable. By nature, these scale-bridging algorithms exploit the sepa-
ration of scales to devise optimal formulations at different levels of description of the problem.
This naturally leads to a layered or hierarchical problem description, which can be beneficial when
matched with the expected hierarchical nature of upcoming exascale computing architectures.

Hierarchical algorithms exploit nested levels of description (or layers) for solving multiscale
problems. These layers may correspond to different description levels of the same physical system
or to descriptions of different (but coupled) physical systems. Furthermore, the hierarchy of models
may be applied globally across the simulation domain or locally, as in adaptive mesh and algorithm
refinement, to restrict consideration of the finest scale to only those regions where such a description
is important. The benefits of a layered algorithmic arrangement for exascale computing originate
in the expected layered architectural arrangement of upcoming exascale computers. Often, differ-
ent layers of a hierarchical algorithm will require vastly different computational resources. This
requirement, in turn, allows one to target those levels of architectural parallelism that are most
suitable for the description of interest.

From a solver standpoint, exascale computing will demand as much asynchrony as available.
This, in turn, will demand both fine partitioning of the algorithm into simple tasks or kernels and
taking full advantage of modern task-scheduling approaches such as directed acyclic graphs, which
can automatically and on the fly schedule tasks according to prespecified dependencies among
different tasks. In the context of hierarchical scale-bridging algorithms, however, partitioning and
asynchrony as key organizational principles for the implementation of any given algorithm are not
necessarily in conflict with a tight-coupling solution strategy. In particular, the layered arrangement
of hierarchical algorithms, together with careful orchestration of the nonlinear solution strategy
via nonlinear enslavement, allows the consideration of each layer as a separate entity from an
implementation standpoint.

In general, the choice for the less computationally intensive layers in the algorithm will be fairly
unconstrained by exascale architectures, since these will not be dominating the overall performance
of the algorithm. However, the constraints imposed by exascale architectures will strongly influ-
ence the choice of representation for fine-scale physical models, which will represent the bulk of
the computational work. As before, the general principles to consider are the ability to achieve
fine-grained parallelism, resiliency (to both soft and hard faults), asynchrony, and floating-point
precision. 