Science Highlights

Filter within BES Additional Filters Filter by Performer
Or press Esc Key to close.
Select all that apply.
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
07.01.16Science Highlight

New Molecule Predicted that Could Make Safer Batteries

Computer-designed molecular complex can be used in halogen-free electrolytes for batteries with superior performance. Read More »

A jar of bio-oil, an alternate “crude oil” for transportation fuels currently made from petroleum, is created by first rapidly heating plant matter in a process called pyrolysis.06.20.16Science Highlight

Water Gunks Up Biofuels Production from Bio-Oils

New findings will help extend the lifetime of catalysts used to process bio-oils in liquid systems. Read More »

Thermal properties of a black phosphorus nanoribbon were a factor of two different along two directions in the crystal structure.06.10.16Science Highlight

Keeping Cool with a Black Semiconductor

The orientation-dependent thermal properties of black phosphorous could be used to keep microchips cool and improve their efficiency. Read More »

Scientists achieved a seamless connection between two disparate materials: a graphene sheet and boron nitride nanotube, as depicted in the bottom overlay by a gray sheet and pink and purple tube.06.10.16Science Highlight

Working Better Together: Two Materials Defining the Future of High-Speed Electronics

Junctions between conductive graphene and insulating nanotubes could lead to faster electronics and computers. Read More »

High magnification images of the surface of a crack - referred to as the fracture surface - provide information on how cracks are formed and progress through a material as it breaks.06.09.16Science Highlight

The Gold Standard of Cracking Tests

Understanding how gold alloy cracks provides insight for material failures for nuclear power. Read More »

A cage-like protein (gray) called ferritin was engineered to have metal hubs (blue) on its surface.06.09.16Science Highlight

Modular Construction - on a Molecular Scale

Predictable assembly of protein building blocks result in a new class of porous materials, with potential uses ranging from efficient fuel storage to practical carbon capture and conversion. Read More »

A snapshot from a large quantum molecular dynamics simulation of the production of hydrogen molecules (green) from an aluminum-lithium alloy nanoparticle containing 16,661 atoms (represented by the silver contour of charge density) and dissolved charged lithium atoms (red).06.09.16Science Highlight

Towards Eco-friendly Industrial-Scale Hydrogen Production

Atomic-scale simulations predict how to use nanoparticles to increase hydrogen production. Read More »

Materials used for their mechanical strength employ a variety of toughening mechanisms.06.09.16Science Highlight

Can We Beat Mother Nature at Materials Design?

Scientists review how we are matching – or exceeding – nature’s ability to make strong, tough lightweight structural materials. Read More »

This artistically enhanced depiction shows an atom being hit by a strong rosette-shaped laser field (purple), ripping an electron (green) from the parent atom that then re-collides with the atom.06.09.16Science Highlight

Combining Electrons and Lasers to Create Designer Beams for Materials Research

Tabletop laser systems generate extreme ultraviolet probes will advance research towards a new generation of energy-conserving electronics. Read More »

Absorption of sunlight in silicon solar cells results in losses due to heat from “hot” photo-excited electrons.06.09.16Science Highlight

Taking on the Heat in Solar Cells: New Calculations Show Atomic Vibrations Hurt Efficiency

Theoretical modeling of energy loss in solar cells may lead to more efficient materials to convert sunlight to electricity. Read More »

Last modified: 11/9/2015 8:59:08 PM