Science Highlights

Filter by Program Additional Filters Filter by Performer
Or press Esc Key to close.
Select all that apply.
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
A cage-like protein (gray) called ferritin was engineered to have metal hubs (blue) on its surface.06.09.16Science Highlight

Modular Construction - on a Molecular Scale

Predictable assembly of protein building blocks result in a new class of porous materials, with potential uses ranging from efficient fuel storage to practical carbon capture and conversion. Read More »

A snapshot from a large quantum molecular dynamics simulation of the production of hydrogen molecules (green) from an aluminum-lithium alloy nanoparticle containing 16,661 atoms (represented by the silver contour of charge density) and dissolved charged lithium atoms (red).06.09.16Science Highlight

Towards Eco-friendly Industrial-Scale Hydrogen Production

Atomic-scale simulations predict how to use nanoparticles to increase hydrogen production. Read More »

Materials used for their mechanical strength employ a variety of toughening mechanisms.06.09.16Science Highlight

Can We Beat Mother Nature at Materials Design?

Scientists review how we are matching – or exceeding – nature’s ability to make strong, tough lightweight structural materials. Read More »

This artistically enhanced depiction shows an atom being hit by a strong rosette-shaped laser field (purple), ripping an electron (green) from the parent atom that then re-collides with the atom.06.09.16Science Highlight

Combining Electrons and Lasers to Create Designer Beams for Materials Research

Tabletop laser systems generate extreme ultraviolet probes will advance research towards a new generation of energy-conserving electronics. Read More »

Absorption of sunlight in silicon solar cells results in losses due to heat from “hot” photo-excited electrons.06.09.16Science Highlight

Taking on the Heat in Solar Cells: New Calculations Show Atomic Vibrations Hurt Efficiency

Theoretical modeling of energy loss in solar cells may lead to more efficient materials to convert sunlight to electricity. Read More »

Tuning topology and adhesion of metal nanomeshes has led to super stretchable, transparent electrodes that don’t wear out.06.09.16Science Highlight

Nano-stiltskin: Turning Gold into … See-through Rubber

New metal nanomesh leads to super stretchable and transparent gold electrodes that don’t wear out. Read More »

The schematic shows protected edges that allow the propagation of these magnetic waves in a single direction along the edge of the crystal.06.09.16Science Highlight

Surf’s Up: Magnetic Waves on the Edge

First realization of a novel material that can conduct magnetic waves on its edge, but not within its bulk. Read More »

A versatile two-step process allows for the controlled synthesis of new materials for energy technology.06.09.16Science Highlight

New Approach to Room-Temperature Materials Synthesis - Low Cost, Simple, and Controlled Composition

Templates allow for materials with deliberate sizes and shapes for solar cells and electricity generation from waste heat. Read More »

A metal oxide nanoparticle gel when agitated with a force greater than the yield stress of the gel, which is the force necessary to make the gel flow.06.09.16Science Highlight

Understanding the Properties of High Tech Gels Used in 3-D Printing

Gels made up of nanoparticles hold together due to their electrostatic interactions and collapse with agitation. Read More »

Solar energy can be stored by using sunlight to split water (H2O) into hydrogen and oxygen.06.09.16Science Highlight

Simple Preparation for Affordable Solar Energy Storage

Inexpensive method allows synthesis of a tiny solar cell that pumps out fuel. Read More »

Last modified: 11/9/2015 8:58:42 PM