User Facility Science Highlights

Search / Filter Highlights

Filters / Search applied:   SC User Facilities [x]
Note: Selecting items from multiple filter menus will show fewer results. Selecting multiple items within the same filter menu will show more results.
Filter by Performer
Or press Esc Key to close.
close
Select all that apply.
Close
A snapshot from a large quantum molecular dynamics simulation of the production of hydrogen molecules (green) from an aluminum-lithium alloy nanoparticle containing 16,661 atoms (represented by the silver contour of charge density) and dissolved charged lithium atoms (red).06.09.16Science Highlight

Towards Eco-friendly Industrial-Scale Hydrogen Production

Atomic-scale simulations predict how to use nanoparticles to increase hydrogen production. Read More »

Absorption of sunlight in silicon solar cells results in losses due to heat from “hot” photo-excited electrons.06.09.16Science Highlight

Taking on the Heat in Solar Cells: New Calculations Show Atomic Vibrations Hurt Efficiency

Theoretical modeling of energy loss in solar cells may lead to more efficient materials to convert sunlight to electricity. Read More »

The cross-section shows key features of a new solar cell architecture.06.08.16Science Highlight

Keep it Simple: Low-Cost Solar Power

A simplified architecture leads to efficiencies rivaling conventional silicon solar cells. Read More »

Nanometer-sized junctions between two types of two-dimensional semiconductors could replace conventional wider three-dimensional junctions.06.08.16Science Highlight

Patterning Smaller Junctions for Ultrathin Devices

Patterned arrays of nanometer-sized connections in two-dimensional semiconductors could enable ultrathin integrated circuits for smartphones and solar cells. Read More »

The crystallized oxide (lighter regions) spelling the word “small” was “printed” on a non-crystallized layer (darker gray) by a well-controlled beam in an electron microscope.06.07.16Science Highlight

Atomic Sculpting with a Microscope

A new tool allows atomic 3D printing. Read More »

Two-dimensional snapshot used to reconstruct the 3D image of a particle.06.07.16Science Highlight

Saturday Night at the Movies: 3D Sneak Preview of Dancing Platinum Particles at Atomic Resolution

Three-dimensional structure of nanocrystals in solution determined with atomic resolution using a new technique. Read More »

Progressively magnified images of graphene nanoribbons grown on germanium semiconductor wafers.06.07.16Science Highlight

Growing Graphene Ribbons in One Direction

New method to fabricate graphene nanoribbon arrays on semiconductor wafers turns semimetal into semiconductor. Read More »

Confined in droplets, exotic phases of liquid crystals have been simulated (left) and experimentally observed (right).06.07.16Science Highlight

Tiny Droplets… Lead to Exotic Properties

Chameleon-like color changes are observed by confining liquid crystals within small drops. Read More »

The ring pattern from the new transmission X-ray diffraction analysis is from the polycrystalline nature of the alloy - in other words, it indicates that the atoms are arranged in small crystalline regions (called grains) that have many different orientations.06.07.16Science Highlight

Finding a Needle in a Crystalline Haystack

New X-ray technique reveals the presence of one-in-a-million large crystalline regions from metals fatiguing—stabilization schemes could lead to impervious metals. Read More »

When light is absorbed by solar cells to make electricity, electrons and “missing electrons” are generated that move through the layers of materials in typical solar cells.06.07.16Science Highlight

New See-Through Material for Electronics

A low-cost, stable oxide film is highly conductive and transparent, rivaling its predecessors. Read More »