
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

ECI Runtime Systems Workshop Summary

Ron Brightwell
R&D Manager, Scalable System Software Department

Purpose and Goals of the Workshop

 Review state-of-the-art in runtime systems (RTS)

 Identify challenges being addressed by current RTS R&D

 Identify research questions that need to be resolved

 Devise metrics, measures, benchmarks, and means for testing
and evaluation for RTS prototypes

 Discuss R&D roadmap that will result in one or more high-
quality RTS prototypes

 http://www.orau.gov/runtimesys2015/

ASCAC Meeting - July 27, 2015

Workshop Details

 March 11-13, 2015

 Rockville Hilton, Rockville, MD

 45 domain experts in HPC runtime systems

 Content
 Invited talks and breakout sessions

 Topics

 The architecture for future RTS software

 RTS design

 Outstanding research questions

 Roadmap for the future

ASCAC Meeting - July 27, 2015

Focus Area 1: System Architecture

 Execution model

 Governing principles of the strategy of computation

 Asynchrony

 Semantics and control strategy in the presence of asynchrony

 System fragmentation

 Scope of the RTS, from system- to node-level

 Relationship between operating system and RTS

 Responsibilities and interfaces

 Relationship between programming models and RTS

 Basic requirements for RTS

 Compile-time information, guidance, and constraints

 Information that compilers can provide to the RTS

 Evaluation

 Metrics for testing and evaluating a RTS

ASCAC Meeting - July 27, 2015

Focus Area 2: RTS Design

 Memory models, namespace, address space

 How the RTS manages memory resources

 Introspection interfaces, policy, and control

 How the RTS can use dynamic adaptive techniques

 Contribution to tools

 Role of RTS in correctness analysis

 Parallelism forms, granularity, and synchronization

 Role of RTS in managing parallelism

 Contribution and responsibility to reliability

 Specific capabilities of the RTS for resilience

 Contribution and responsibility to power/energy

 Role of RTS in minimizing energy costs

 Evaluation

 How to test and evaluate RTS design

ASCAC Meeting - July 27, 2015

Workshop Builds on RTS Summit Activity

 RTS Summit meeting, April 9, 2014

 11 attendees from X-Stack projects

 Day-long meeting to brainstorm about
requirements for an exascale RTS

 Goal was to develop high-level
requirements, roles, and responsibilities
for RTS

 Provide some context for generating
roadmap for future investments in RTS

 Services an RTS needs to provide

 Interfaces between RTS and

 Node- and system-level hardware
abstraction layers

 Operating system

 Programming interface

 Mapping these interfaces to existing RTS

 45-page draft report

ASCAC Meeting - July 27, 2015

RTS R&D in Several ASCR Projects

 X-Stack program has
played key role in
supporting RTS R&D for
extreme-scale

 X-Stack renewal enables
engagement across
projects in RTS

 Prototypes

 Interfaces

 Evaluation strategies

ASCAC Meeting - July 27, 2015

Qthreads

Conductor

RTS in NNSA/ASC Projects

ASCAC Meeting - July 27, 2015

HPX STAPL

Charm++

Argobots

Realm

UINTAH

Many Other Run Time Systems

 Nanos/StarSS/OmpSS (BSC)

 StarPU/ForestGOMP (Inria)

 SWARM (ETI)

 MassiveThreads (U. Tokyo)

 Cilk/Cilk Plus (MIT/Intel)

 Grappa (UW/PNNL)

 HAS (AMD)

Definition of RTS (incomplete)

 Strong desire to understand responsibilities of the RTS

 Characteristics
 Non-priveleged

 Runs in application space

 Ephemeral

 Doesn’t live beyond the application

 Can manage hardware directly

 As long as isolation and protection mechanisms are provided

 Interfaces to the node-level OS

 May interface to the system OS and the enclave OS

 Definition may be platform specific

ASCAC Meeting - July 27, 2015

Architecture for Exascale RTS

 Execution model

 Struggle with nomenclature

 Depends on what runtime service being provided

 Runtime services should be able to be bypassed

 Asychrony

 Performance variability – how to do resource management?

 Some programming models embrace it

 Everything needs to be lightweight – scheduling, synchronization, etc.

 Relationship between RTS and OS

 Services used by application versus across applications

 OS should still get out of the way but enable the RTS

 Relationship to PM

 What gets exposed and what gets hidden (transparency)

 Connection to services like data management, security, performance monitoring

 Flow of information between app and RTS

 Evaluation

 What are the metrics?

 RTS portability

ASCAC Meeting - July 27, 2015

RTS Architecture (cont’d)

 Blurry lines between RTS above (PM) and below (OS)
 Dynamic compilation, interpreted languages, etc. make this problem

worse

 Lack of clear taxonomy is hindering effective integration

 Need requirements from the top
 Loss of semantic information all the way down the stack

 QoS requirements, allocation of resources should be exposed
as hints from the application programmer to drive policy
decisions

 Managing shared resources

 Dealing with elasticity

 Resilience is a cross-cutting problem

ASCAC Meeting - July 27, 2015

RTS Design

 Memory System

 Translation

 Need to support static, semi-static, and dynamic use of memory

 How to differentiate between memory and storage

 How memory is virtualized

 Introspection

 Need a well-defined set of policies and abstractions for reasoning about the behavior of
the system

 Need to be able to observe all aspects of the hardware

 Different granularities of information to be observed

 Cost of introspection

 Reliability

 Vulnerability of the RTS to faults

 Complexity of interactions exacerbates this problem

 Energy/Power Management
 Responsibility of job scheduler, job-level RTS, node-level RTS

ASCAC Meeting - July 27, 2015

RTS Design (cont’d)
 Scheduling and Resource Management

 Priorities

 Load balancing

 Latency hiding

 Systems will be malleable and elastic

 Resolving conflicts between different policies

 Tool Infrastructure
 Toolchain needs to be co-designed with RTS

 Attribution of performance bottlenecks

 Interoperability of different programming systems and RTSs

 Application developers need to understand detailed decisions by RTS

 Evaluation
 Adoption is a good metric

 Scalability, flexibility, portability, completeness, ease of use

ASCAC Meeting - July 27, 2015

Articulate the RTS Ecosystem

 Develop an ecosystem model for RTS components

 Determine which RTS services are stand-alone and which are
embedded into larger components
 RTS support for language-specific features

 Identify interfaces that are ready for a standardization
process

 Process for transitioning RTS software from research to
production

ASCAC Meeting - July 27, 2015

Metrics
 Don’t want performance metrics alone

 Need relative metrics to evaluate research progress

 Time to solution

 Time to solution with failures

 Time to solution with system variability

 Time to solution under power/energy constraints

 Runtime overhead
 CPU overhead

 Memory overhead

 Portability of RTS

 Many concerns about
 Evaluating the RTS (or PM)

 Evaluating the implementation of the RTS (or PM)

 Evaluating the ability of the hardware to support the RTS (or PM)

ASCAC Meeting - July 27, 2015

Dynamic Control

 What does each RTS layer or component control?

 How do layers coordinate toward goal-oriented
optimizations?

 Need to identify resources that are managed

 Need to figure out how to coordinate and optimize across
layers

 Backplane for communication between layers

 Define data and mechanisms for introspection

ASCAC Meeting - July 27, 2015

Resilience

 RTS needs to support resilience
 Must interface to other software layers

 RTS also needs to be resilient

 RTS-based strategies
 Task replication and migration

 Fine-grain checkpointing

 Critical challenge for extreme-scale

ASCAC Meeting - July 27, 2015

Adoption

 New RTS layers must be done with application developers and
system software developers

 DOE needs to partner with application teams

 Need to disseminate RTS R&D impact
 Track open research questions

 Share peer-reviewed success with broader community

 Co-design should include system software, applications, and
platforms

ASCAC Meeting - July 27, 2015

Research Questions

 What are the forms of schedulable tasks managed by the RTS? (threads,
processes, codelets, fibers, etc.)

 What is the assumed memory structure? What are the performance
trade-offs and opportunities of dynamic allocation and redistribution?

 What are first-class objects that can be named and what is the scope of
that name (locality)?

 Interfaces and flow of information involving RTS

 Control model for RTS introspection

 Managing overhead of hiding latency while exploiting parallelism

 What is the role of the RTS in reliability?

 Role of the RTS in managing power/energy

 Role of RTS in application interoperability

 What architectural support does the RTS need?

 How can performance modeling and evaluation be leveraged?

ASCAC Meeting - July 27, 2015

Research Questions (cont’d)
 RTS

 User-level constructs that exist within a single executable

 Part of the programming model implementation

 Can the RTS support multiple PM/Es?

 Can different RTSs use shared resources?

 How does data move between runtimes?

 Convergence
 No standard practice

 Need to establish a process for incorporating research results into an
initial production approach

 View the RTS as a set of services and establish minimal set of services

 Need an initial detailed survey and inventory of service/interface
points

 Allow for convergence on a few RTSs and establish attributes for
interoperability

ASCAC Meeting - July 27, 2015

Research Questions (concl’d)

 Industry integration
 How to incorporate research efforts to industry

 RTS characteristics
 Are dynamic RTSs needed for exascale performance?

 How much parallelism should be exposed to the RTS?

 How should application communicate information about locality and
load balance to the RTS?

 How should the RTS interact with other parts of the system?

ASCAC Meeting - July 27, 2015

Key Takeaways
 Need to define a process to work through several issues

 Workshop only scratched the surface

 Need crisp definitions for basic terms

 Need to agree on set of services to organize discussions

 Tension between monolithic approach and interoperable components

 Everyone wants control of the layers below them (including apps)

 Need bi-directional flow of information between layers

 Better agreement on what is “OS” and “RTS”

 Interoperability between different RTS

 Are dynamic RTS capable or necessary for exascale?

 Emerging awareness of ties between RTS and SSIO

 RTS itself will need to be resilient

 Introspection is a key aspect, but what can/should be queried?

 What is the path to production use? How to engage vendors?

 Need metrics, even to help with concepts (e.g., overdecomposition, dynamic)

 Will overheads outweigh benefits at scale?

 Need to catalog research questions that are being answered

ASCAC Meeting - July 27, 2015

Draft Report

 Currently 29 pages

ASCAC Meeting - July 27, 2015

