DOE and NIH Partnerships
Cancer and Brain

Rick Stevens
Argonne National Laboratory
The University of Chicago
Acknowledgements

Material in this talk is from Argonne, Berkeley, Oak Ridge, Livermore and Los Alamos, NCI, UCSF, Harvard and University of Chicago

Special Thanks to

Bobby Kasthuri (Argonne and Uchicago)
Jeff Lichtman (Harvard)
HansPeter Pfister (Harvard)
Peter Denes (Berkeley)
Gina Tourassi (Oak Ridge)
Fred Streitz (Livermore)
Frank Alexander (Los Alamos)
Eric Stahlberg (NCI)
Peter Littlewood (Argonne and Uchicago)
Cancer, brain research, and supercomputing

By contributing to health research, the Department of Energy could transform its approach to designing the next generation of high-performance computers. When computers capable of working at the exascale level (10^18 floating-point calculations per second) come online, they will be brought to bear on figuring out how another, quite different computer, the human brain, works. With that goal in mind, Energy secretary Ernest Moniz and National Institutes of Health director Francis Collins are exploring how to bring the Department of Energy, which houses the nation's leading supercomputers, into the presidential initiative known as BRAIN (Brain Research through Advancing Innovative Neurotechnologies; see PHYSICS TODAY, December 2013, page 20).

The brain is just one area of biomedical research that could benefit from the computational and physical sciences expertise at DOE and its national laboratories. In December Moniz asked his Secretary of Energy Advisory Board (SEAB) to look for ways to increase DOE's contribution to biomedical sciences. A SEAB task force, cochaired by former NIH and National Cancer Institute (NCI) director Harold Varmus and former DOE undersecretary Steven Koonin, will report to him in September.

The BRAIN initiative will require advances across several scientific fields. "We need better ways of detecting and recording neural signals," says Rodrick Pettigrew, director of NIE's National Institute of Biomedical Imaging and Bioengineering. "Then we need analytical tools to interpret those signals. We need ways of deciphering meaningful signals from noise, an area DOE scientists are accustomed to dealing with."

Another area of focus is the modeling of what goes on in the brain, resolved in three dimensions and in time. "People often don't think of the time domain of medical data," notes Pettigrew, the designated liaison to DOE. "But life is temporal, and biological dimensions change in the time domain."

Three White House Initiatives

- National Strategic Computing
- Precision Medicine
- BRAIN
Joint Design of Advanced Computing Solutions for Cancer

DOE-NCI partnership to advance cancer research and high performance computing in the U.S.

December 11, 2015

Presented to:
Secretary Moniz and Director Lowy
The NCI-DOE partnership will extend the frontiers of precision oncology (Three Pilots)

- **Cancer Biology**
 - Molecular Scale Modeling of RAS Pathways
 - Unsupervised Learning and Mechanistic models
 - Mechanism understanding and Drug Targets

- **Pre-clinical Models**
 - Cellular Scale PDX and Cell Lines
 - ML, Experimental Design, Hybrid Models
 - Prediction of Drug Response

- **Cancer Surveillance**
 - Population Scale Analysis
 - Natural Language and Machine Learning
 - Agent Based Modeling of Cancer Patient Trajectories
Developing new therapeutic approaches to target RAS-driven cancer

30% of cancers have mutated RAS
~1M deaths/year

Current therapies ineffective against RAS-driven cancer

Molecular Dynamics
Simulation
Modeling

RAS biology
ID targets
New inhibitors
Pilot 2: RAS proteins in membranes

RAS activation experiments at NCI/FNL

- CryoEM imaging
- X-ray/neutron scattering

Multi-modal experimental data, image reconstruction, analytics

Protein structure databases

New adaptive sampling molecular dynamics simulation codes

- Adaptive time stepping
- Coarse-grain MD
- Classical MD
- Quantum MD
- Adaptive spatial resolution
- High-fidelity subgrid modeling

Predictive simulation and analysis of RAS activation

- Granular RAS membrane interaction simulations
- Atomic resolution sim of RAS-RAF interaction
- Inhibitor target discovery

Machine learning guided dynamic validation

- Unsupervised deep feature learning
- Mechanistic network models
- Uncertainty quantification
Patient Derived Xenograft Models

Patient-derived xenografts (PDX) & conditionally reprogrammed cell lines

Tumorigenesis

Create reprogrammed cell lines

Transplantation into NSG mice

Tumor/patient heterogeneity

Molecularly characterize, treat/screen mice bearing transplants & cells with relevant drugs.

“Pre-clinical clinical trials”

Pilot 1: Predictive Models for Pre-Clinical Screening

Terabytes
- Cell Line Compound Screens
- Compound Databases
- Cell Line Molecular Assays
- PDX Features (DNA, RNA, Images)
- PDX Compound Screens
- Protein-Protein Interactions
- Cancer Pathway Databases
- Cancer Genome Atlas
- Gene Expression Omnibus
- Cancer Data Commons

Machine Learning Based Predictive Models
- Transcriptomics
- Proteomics
- Variation
- Cell Line Based Screens
- Machine Learning Methods
- PDX Based Screens
- Transcriptionomics
- Imaging
- Small RNAs
- Feature Engineering, Cross Validation, Scalable Compute on CORAL

Uncertainty and Optimal Experiment Design
- UQ Analysis, Model Selection, Model Improvement, Proposed Experiments

Hypotheses Formation and Mixed Modeling
- Feature Importance Mining
- Biological Interaction Network Modeling
- Integration of Mechanistic, Statistical and Inferential Modeling
Aims for Pre-Clinical Screening Pilot

- Reliable machine learning based predictive models of drug response that enable the projection of screening results from and between cell-lines and PDX models
- Uncertainty quantification and optimal experimental design to assert quantitative limits on predictions and to recommend experiments that will improve predictions
- Improved modeling paradigms that support the graded introduction of mechanistic models into the machine learning framework and to rigorously assess the potential modeling improvements obtained thereof
Cancer Patient Surveillance and Information Integration

Cancer patient demographic and clinical outcomes data

Pathology → Molecular → Radiation → Initial Treatment → Treatment Effectiveness → Subsequent Treatment → Survival, Progression, Patient Outcomes

General population optimized treatments

Future diagnostics and treatments

SEER Cancer Information Resource
Pilot 3: Population Information Integration, Analysis and Modeling

- O(Terabytes) NCI SEER Database
- O(Petabytes) Clinical Reports
- Temporal & Spatial Trajectory
- Electronic Medical Records/Claims
- OMICS
 - Genomic
 - Imaging

Deep Text Comprehension + Multi-Task Learning
- Convolution network layers
- Unsupervised methods for
 - POS Tagging
 - NER
 - SRL
 - SRW

Traditional NLP + Data Analytic/Machine Learning
- POS Tagging
- Named Entity Recognition (NER)
- Semantic Role Labeling (SRL)
- Semantically Related Words (SRW)

- O(Terabytes) Hospitals/Pharmacies
- O(Petabytes) Infrastructure and Socio-Economic Data
- Census

- Patient Generated Data

- Results from Pilots 1 & 2

- Free text

Novel Data Analytic Techniques for Integration and Analysis
- Graph Analytics
- In-memory Analytics
- Visual Analytics
- Uncertainty quantification

Data-driven Integrated Modeling & Simulation for Precision Oncology
- New Clinical Bio-markers
- Other patient-relevant data
- Precision profile for patient/patient cohort
- Clinical trial simulations on HPC for patient cohort – O(100K) individuals

- Social media
- Personal devices
- Other non-traditional data

In-silico clinical trials
Emerging NSCi Public Private Partnership for Computing Precision Medicine

Biopharma

National Laboratories and Universities
- ANL
- ORNL
- LLNL
- LANL
- FNLCR
- Harvard University
- University of Chicago

Government
- Department of Energy
- National Cancer Institute

Biopharma
- Glaxo Smith-Kline

Technology
- Intel
- IBM
The NCI-DOE partnership will extend the frontiers of DOE computing capabilities

- **In simulation**
 - Atomic-resolution MD simulations of critical protein complex interactions that will require exaflops of floating point performance
 - New integrations of QM and multi-timescale methods that enable high-accuracy interactions over extended time windows
 - Integration of data-driven modeling and analytics at scale for rapid-cycle new intervention development and testing *in silico*
 - Extended theory and tools for UQ in multiple spatial and temporal scales

- **In data analytics**
 - Learning dynamic patterns from molecular to population scale data sets on CORAL-class architectures
 - Integrated machine-learning and simulation systems that bring together mechanistic and probabilistic models

- **In new computing architectures**
 - Codesign of architectures integrating learning systems and simulation in new memory-intensive hierarchies
 - Growth of new computing ecosystems bringing together leadership-class HPC and cloud-based data systems
 - Integration of beyond Von Neumann architectures into mission workflows
The NCI-DOE partnership will extend the frontiers of precision oncology (Three Pilots)

- **In understanding cancer biology**
 - Deepen awareness of disease initiation in key RAS-related cancers
 - Improve understanding of critical cancer pathways
 - Develop new molecular models to probe and explain complexities of cancer
 - Develop predictive models to identify novel targets and substances

- **In pre-clinical models**
 - Develop technologies to bridge insight between cell line and PDX models
 - Accelerate identification and evaluation of new promising cancer drugs
 - Prepare foundations to expand breadth of treatments and conditions for cancer precision medicine

- **By expanding the population’s role in future advances**
 - Increase comprehensiveness and efficiency of critical information within cancer registries
 - Identify new biomarkers impacting patient outcomes
 - Develop capabilities to identify optimal care pathways for cancer patients
 - Develop data-driven predictive models of patient health trajectories
Integration of Simulation, Data Analytics and Machine Learning

- Large-Scale Numerical Simulation
- Scalable Data Analytics
- Deep Learning

Traditional HPC Systems

CORAL Supercomputers And Exascale Systems
Deep Learning and Drug Screening

@Johnson and Johnson

Jörg K. Wegner and Hugo Ceulemans, et. al. (NIPS2014)

“Deep learning outperformed all other methods with respect to the area under ROC (auc 0.83) curve and was significantly better than all commercial products. Deep learning surpassed the threshold to make virtual compound screening possible and has the potential to become a standard tool in industrial drug design.”
Hybrid Models in Cancer

Figure 1. In two DREAM challenges, high throughput data characterizing cancer cells are used to build predictive models. Mechanistic models provide insight into the underlying biology, but do not take full advantage of the information within the data to achieve high performance. Machine learning methods are associative and extract maximum predictive value from the data, but do not always provide insight about mechanism. The future may bring hybrid models that combine the best of both approaches.

Predicting Cancer Drug Response: Advancing the DREAM

Russ B. Altman

Summary: The DREAM challenge is a community effort to assess current capabilities in systems biology. Two recent challenges focus on cancer cell drug sensitivity and drug synergism, and highlight strengths and weaknesses of current approaches. Cancer Discov; 5(3); 237-8. ©2015 AACR.
The Big Picture Goal

• The challenge is to map the circuits of the brain, measure the fluctuating patterns of electrical and chemical activity flowing within those circuits, and understand how their interplay creates our unique cognitive and behavioral capabilities.

• We should pursue this goal simultaneously in humans and in simpler nervous systems in which we can learn important lessons far more quickly. But our ultimate goal is to understand our own brains.
NOW IS THE TIME TO INVEST IN BRAIN RESEARCH

POSSIBLE LONG-TERM OUTCOMES

The BRAIN Initiative has the potential to do for neuroscience what the Human Genome Project did for genomics by supporting the development and application of innovative technologies that can create a dynamic understanding of brain function. It aims to help researchers uncover the mysteries of brain disorders, such as Alzheimer’s and Parkinson’s diseases, depression, Post-Traumatic Stress Disorder (PTSD), and traumatic brain injury (TBI).
The Human Genome Project demonstrates the potential impact that ambitious research programs like the BRAIN initiative can have. From 1988-2003, the Federal Government invested $3.8 billion in the Human Genome Project, which has since generated an economic output of $796 billion—a return of $141 for every $1 invested.
Goals of the BRAIN 2025

• Discovering diversity: cell types
• Maps at multiple scales: connectome
• Brain in action: dynamic activity
• Demonstrating causality: link to behavior
• Identifying fundamental principles
• Advancing human neuroscience
• BRAIN to brain: integration and translation
NIH Blueprint for Brain started in 2004.. GC launched in 2009 (15 institutes)

Blueprint Grand Challenges

- The **Human Connectome Project** is an effort to map the connections of the healthy brain. It is expected to help answer questions about how genes influence brain connectivity, and how this in turn relates to mood, personality and behavior. The investigators will collect brain imaging data plus genetic and behavioral data from 1,200 adults. They are working to optimize brain imaging techniques to see the brain’s wiring in unprecedented detail. Building on the success of the Connectome Project, in 2014 the Blueprint authorized funds to expand the age range of normal subjects to include both young people and older adults.

- The **Grand Challenge on Chronic Neuropathic Pain** supports research to understand the changes in the nervous system that cause acute, temporary pain to become chronic. The initiative has supported multi-investigator projects to partner researchers in the pain field with researchers in the neuroplasticity field.

- The **Blueprint Neurotherapeutics Network** is helping small labs develop new drugs for nervous system disorders. The Network provides research funding, plus access to millions of dollars worth of services and expertise to assist in every step of the drug development process, from laboratory studies to preparation for clinical trials. Project teams across the U.S. have received funding to pursue drugs for conditions from vision loss to neurodegenerative disease to depression.
Overall Planning Document
(15 academic authors, NIH, NSF, DARPA, FDA)

- Vision and Philosophy
- Priority Research Areas
- Implementation goals, deliverables, timelines and Costs
- 6 workshops
- ~100 Participants
- computer scientists?
- Mathematicians?

BRAIN 2025
A SCIENTIFIC VISION

Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Working Group
Report to the Advisory Committee to the Director, NIH

June 5, 2014

146 pages CS mentioned 5 times Math mentioned 4 times
Proposed 12-year budget for the BRAIN Initiative. Collaborative technology development is emphasized through FY2019, while discovery-driven science receives priority beginning in FY2020. ‘Infrastructure’ is for facilities and capabilities that will benefit researchers across the entire nation, with emphasis on data sharing resources, training in the use of new technologies and quantitative methods, and possible regional instrumentation centers during the last half of the BRAIN Initiative.
BRAIN initiative Awards
BRAIN Initiative Major Areas

• Cell Types
• Circuit Diagrams
• Monitor Neural Activity
• Interventional Tools
• Theory and Data Analysis Tools
• Human Neuroscience
• Integrated Approaches
FY2016 Investments

FY2015 ~$200M

- NIH $135M
- DARPA $95M
- NSF $72M
- IARPA $XM
- FDA $XM

Building off of $100 million in commitments announced last year at NIH, NSF and DARPA, the BRAIN Initiative is growing to five participating federal agencies with the addition of FDA and IARPA.

DOE has a proposed FY17 role for BES, BER and ASSCR
The challenge of understanding the brain requires extraordinary advances in neuroscience…

… along with cross-disciplinary efforts combining physics, computation, x-ray science, and energy science.

100 billion neurons

100 trillion synapses

1 zettabyte in ‘Google brainmap’

- about the annual global internet traffic
Scales in the brain

Lichtman and Denk 2011
Connectomics Workflow

- Tissue Preparation
- Sectioning & Wafer Prep
- Image Acquisition
- Registration
- Segmentation & Synapse Detection
- Visualization & Analysis
High-Throughput Imaging

61 Beam SEM
12 TB / day
2 PB in ~6 months
Fully automatic (Rhoana) Hand segmentation (VAST)

Kasthuri et al., Cell 2015
Knowles-Barley et al.
Progress on the Connectome

Bobby Kasthuri, et. al. Argonne, Uchicago and Harvard
2 person-years
1500 µm³
1/666,666th of 1 mm³

Kasthuri et al., Cell
2015
APS and X-Rays for Connectome
In-situ Reconstruction via X-ray Tomography
NeuroLines –
Neuronal Connectivity Analysis

Al-Awami et al., TVCG 2014
BIGNEURON: Automated Image Reconstruction for Large-scale Phenotyping of Neuron Morphologies

- Algorithms (M > 20)
 - Algorithm porting and data analysis
 - Hackathons (4)

- Neuron Images (N > 30K) Annotation
 - Workshop to establish “gold standard” manual reconstruction

- Supercomputing (4 centers)
 - Bench testing of algorithms across all images

- Data hosting (1-3 mirror sites)

- Integrated data analysis and visualization for petabyte scale datasets on TITAN/EVEREST
 - Hosting about 30,000 neurons + O(200 TB) reconstruction data
 - Enable standardization of neuronal reconstruction algorithms at scale
 - Interactive portal to visualize and download datasets for users

Contacts: Arvind Ramanathan (ORNL) & Hanchuan Peng (Allen Institute)
ramanathana@ornl.gov & hanchuan.peng@gmail.com

Example snapshot of automated neuronal reconstruction algorithms

Nov 2015: Hackathon at EVEREST visualization center
Multi-modal tools for interrogating brain function

Next-generation optical technologies

Optimize signals for specific questions

- UpConverting Nanoparticles
- Opto-acoustic Approaches
- Fast Ionic Sensors

High-channel count electrical recordings

- High Channel-Count Electrocorticography
- High-throughput Data acquisition and FPGA
- Novel Probes (e-beam litho)
- Neural Engineering Lab

μECoG Array
Laminar Polytrecde
Fibre Optic

High-Channel-Count Electrocorticography
Critical disease processes take place at scales that simply cannot be seen, even by today’s best tools.

PET scan showing activity in the brain of an Alzheimer’s patient, National Institute on Aging.
In vivo: Optogenetics allows visualisation of neural activity
The Functional Connectome: structure of brain functions

A weighted, direct graph describing the dynamic, casual interactions amongst neurons in the functioning brain.

(e.g.) Each edge is estimated from data using machine learning.

Functional network from human electrophysiology derived using LBNL developed algorithms.
GlassBrain — Visualization

EEG powered by BCILAB | SIFT

EEG (color indicates “power” and frequency, MRI (Diffusion Tensor Imaging) for structure

Adam Gazzeley Lab - UCSF
Brain-mapping tools
ASCR can uniquely contribute to BRAIN computing through advances in applied mathematics and computer science together with HPC facilities.

Linking structure to function is a ‘grand challenge’ in general biology and materials
Top Level Computing Opportunities

• Large-scale Data Analysis
 – Reverse engineering (e.g. BRAIN, microbiome)
 – Searching, diagnostics and sensors (e.g. id, amr)
 – Data integration and bioinformatics (e.g. amr, Cancer)

• Large-scale Predictive (statistical) Modeling
 – Predictive Tools (PMI, cancer, public health, amr)
 – Hypothesis Formation (e.g. id, amr, cancer)

• Large-scale Explainatory (mechanistic) Modeling
 – Molecular Interactions (molecules, pathways)
 – Physiological Modeling (cell, organ, organism)
 – Cellular Populations (brain, id, cancer, evo-devo, etc.)
Labs are Particularly Good at

- Building flexible teams that cross disciplines and cross laboratories
- Sustained technology development needed to reach a goal and involves partners (vendors, uni, labs, etc.)
- Large-scale project management
- Production quality software development and software engineering (code teams)
- Building user communities around new scientific capabilities (facilities, and online services)
- Integrating across multiple domains and facilities
DOE NIH Interaction Models

• NIH can and does tap into labs via University Grants and Contracts (extramural)
 – Lab PIs with Joint appointments
• NIH supported PIs are users of lab user facilities
 – Light sources, EMSL, JGI, LCFs, Nanoscience, etc.
 – Software and materials sharing
• Direct funding/hosting arrangements
 – Structural Biology at some labs (APS, …)
• Agency-to-Agency arrangements
 – DOE-NCI Pilots?, BRAIN?,
What Might be Needed for the Future

- A flexible framework for larger scale partnerships that tap into the capabilities and culture of the labs in a more direct fashion
 - Partnership projects (Intramural/Laboratory)
 - DOE/NCI/Moonshot, Informatics, Computing?
 - NIH centric facility hosted at Labs
 - National Brain Observatory (e.g. connectome facility)
 - Hosted computers/data infras (e.g. “X Commons”)
 - NIH projects as “plug-ins”
 - Co-Design participant for Exascale Apps
 - Intramural computing partnership with ASCR facilities
Computing is a Great Integrator

• To truly understand something means we can build models that predict future states or outcomes and give us insights or explanations of the behavior of the system.
• To do this often requires integration of knowledge from many sources into a coherent computable representation that can be used to test hypotheses and conjectures.
• In this sense computing/modeling collaborations often play the role of grand scientific integrators this is true in DOE mission space and also is often true in NIH mission space.
• Computing collaborations with DOE could improve how NIH integrates science across domains, institutes and projects.
Many thanks to DOE, NSF, NIH, DOD, ANL, UC, Moore Foundation, Sloan Foundation, Apple, Microsoft, Cray, Intel and IBM for supporting my research group over the years