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This report summarizes the results of a workshop on software tools for exascale machines. The
goal of the report is to highlight the challenges in providing scalable tool support on exascale class
machines and to identify key research and development needs as well as opportunities to meet these
challenges. In this context we define tool support very broadly as software that helps programmers
to understand, optimize and fix their codes as well as software that facilitates interaction between
application, run-time, and hardware. This includes tools for performance analysis, static and run-
time optimization, debugging, correctness verification and program transformation.

The workshop participants considered a range of approaches, from evolutionary ones based on
existing tools to revolutionary approaches needed to cope with new challenges that will arise with
the emergence or exascale systems.

Tools challenges for exascale systems include coping with the extreme scale of concurrency;
gaining insight into the behavior of dynamic adaptive parallel applications and runtime systems;
constructing tools that are resilient to failure; understanding data movement and power consump-
tion; understanding of utilization of shared resources, including deep memory hierarchies, network,
memory bandwidth, and I/O; and coping with multi-level parallelism and heterogeneous processor
cores. Tools must support measurement, attribution, analysis, and presentation of performance and
correctness properties. Each of these issues is challenging in the face of the complexity of exascale
systems.
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Executive Summary

This report documents the 2011 Exascale Tools Workshop held October 13-14 in Annapolis,
MD. It is authored by the workshop organizing committee with input from the many lab, academic,
and private sector attendees listed on the workshop website:

http://science.energy.gov/ascr/research/computer-science/exascale-tools-workshop/
It is the goal of this report to provide clear articulation and prioritization of challenges (both

known and uncertain), prioritized list of responses, road-map with time-lines for implementing
those responses, and a rough idea about the order of magnitude of costs involved. This report
details the presentations at the workshop, the breakout groups work tasks, as well as homework
tasks that were identified and completed after the workshop.

The workshop identified general challenges and solutions for the different categories of tools,
as well as the specific challenges and solutions for each category. The workshop brought in cross-
cutting topics, such as power, resilience, and criteria for measuring tools impact on applications.
This is not the first nor the last forward-looking HPC tools workshop. Exascale is new to the
discussion and brings with it more than just changes in scale for tools, but also significant changes in
scope as well. The tool spaces discussed were performance as well as correctness and/or debugging.
In both areas there are new topics which exascale brings with it. The targets for performance at
exascale are more broad than simple time to solution and include power and thermal concerns. The
nature of error detection and the context in which debugging is done are likewise expanded from
something done during a side session with a tool, to the broader and more persistent context of
production execution. In general we expect a need for more watchdogs for both performance and
correctness at exascale that are ”built-in” the exascale runtime compared to petascale. This is not
to say that a one-size-fits-all approach is merited. A spectrum of tools are needed and both the
tool in a session as well as tools built into the runtime approaches will complement one another.

In order to describe a path forward for exascale tools that serves both contexts, discussion was
afforded to the topic of APIs for information sharing between tools and also with the application
itself for auto-tuning. In keeping with the theme of broadened scope for tools, componentization
of APIs to modularly organize the topics that a tool addresses are discussed. These APIs must
also keep pace with the explosion of concurrency and scale expected at exascale. This last concern
makes attention to performance overhead, asynchronous analysis capabilities, and fault tolerance
key concerns.

Lastly, the path forward also includes a discussion of roles for HPC researchers that benefits
from what the vendor ecosystem can provide in the tools space.

ASCR Tools Challenges for Exascale Computing 1
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1 Introduction

Exascale class machines will exhibit a new level of complexity: they will feature an unprecedented
number of cores and threads, exhibit highly dynamic behavior, will most likely be heterogeneous and
deeply hierarchical, and offer a range of new hardware techniques (such as speculative threading,
transactional memory, programmable prefetching, and programmable accelerators) that all have
to be utilized for an application to realize the full potential of the machine. Additionally, users
will be faced with less memory per core, fixed total power budgets, and sharply reduced MTBFs.
At the same time, it is expected that the complexity of applications will rise sharply for exascale
systems, both to implement new science possible at exascale and to exploit the new hardware
features necessary to achieve exascale performance.

Looking back four years, to set the stage for the deployment and productive use of current
computer platforms, the Workshop on Software Development Tools for Petascale Computing, held
in Washington DC on August 1-2, 2007, identified and prioritized research opportunities in the
area of software development tools for high performance computing. These opportunities have been
documented in the ensuing report [51], which describes the basic requirements for tools that can
help application developers deal with hardware complexity and scalability challenges at petascale.
For performance tools, the report discusses needs for online measurement and adaptivity to better
address heterogeneous and hierarchical architectures, and stresses the need for hardware and system
software to make the necessary performance information available to tools to improve the accuracy
of the performance analyses. For correctness tools, the report identifies scalability as essential, and
pointed out that that application developers request lightweight, easy-to-use tools for diagnosing
errors. Concurrently, it likens performance and correctness tools to efficient and flexible scalable
infrastructures for communication, data management, binary manipulation of executables, batch
schedulers and operating systems etc.

One might realize that the needs previously associated to petascale tools are in fact persis-
tent. However, the exascale landscape poses many more formidable challenges, and as it has been
pointed out “exascale is hostile for tools”. In essence, applications and tools will face similar is-
sues in exascale (e.g., new programming models and growing complexity) and will need to evolve
concomitantly.

While several tool sets have been successfully deployed on petascale machines, in most cases this
support is rather limited. Scaling is often achieved by applying brute force and tools are restricted
to single programming paradigms. Furthermore, current generation tools mostly focus on the data
collection combined with post mortem analysis and visualization and have only limited support for
online or in situ analysis and evocation of response.

To overcome these limitations and provide the users with the necessary tool support to reach
exascale performance, we need a new generation of tools that help users address the bottlenecks
of exascale machines, that work seamlessly with the (set of) programming models on the target
machines, that scale with the machine, that provide the necessary automatic analysis capabilities,
and that are flexible and modular enough to overcome the complexities and changing demands of
the exascale architectures.

To address the challenges posed by exascale systems and to meet the high-level requirements
outlined above, significant research and development in the area of tools and tool support is needed.
These efforts will need to focus both (1) on developing new tools capabilities that users will need
to scale their applications to exascale and (2) on novel infrastructure that make implementing such
tools feasible. Further, (3) research and development of software tools has a significant overlap
with all other areas of exascale software and hardware design; these must be addressed as part of
Co-Design efforts. Finally, (4) after tools have been developed we need concrete support models

ASCR Tools Challenges for Exascale Computing 2
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that ensure the availability of the tools in the long run and across multiple hardware generations.
In the following sections we will highlight issues and research opportunities necessary to cover these
efforts.

User Expectations on the Usability of Exascale Tools Integrated simulation codes are
large, often complex, and sometimes pushing limits of everything including language features.
Tools deployed must be robust enough to handle these codes. At the same time these tools must
be highly usable if they are to see adoption by user communities and deliver impact in increasing
the performance of a large share of the exascale application space.

Usability is not a single target as there are many stakeholders and scopes within which tools
are used. Tools used by end users must include options for high-level lightweight diagnostics that
give an indication as to whether a performance loss or incorrect result has occurred as well as
deep-dive tools that enable the power user or performance engineer to fully dissect the problem
to be addressed. This provides a challenge to exascale tool design, development, and deployment
since one or two full-featured, highly responsive tools will not exist. Instead there will be a suite
of more special purpose tools. An important part of tool deployment will include establishing of
a usage model for tools at exascale to document expectations, limitations, and a guide to their
applicability for problem solving.

The goal of usability is to enhance the impact that tools have on exascale workloads by catalyzing
their widespread use in broader HPC communities. It’s not expected that all tools should serve all
exascale stakeholders, but it is expected that all stakeholders have some tool that is accessible and
usable for them to examine performance, debugging, and correctness questions.

User Requirements for Tools A key and new aspect of exascale is the scope of what users will
require from tools. Instead of one or two simple measures of performance, exascale computing will
see a broadening of scope as to what tools report and what they address. Measures such as floating
point rate and communication time will be augmented with power consumption, data movement,
network contention, and reliability concerns. In increasingly complex exascale architectures users
will require expanded scope and increased attribution of events and metrics back to their causes.
Exascale machines are expected to look significantly different from previous machine generations.
They will feature significantly larger core counts, less memory per core, new hardware features like
programmable prefetching or speculative threading, software controlled accelerators, etc. Users
will expect tools to help them cope with these new features and the challenges they introduce.
Additionally, while HPC tools have traditionally focused on debugging and computational speed,
exascale tools must expand to support the measurement and analysis of other metrics of interest
such as memory utilization, temperature, reliability, and power consumption. Moreover, the depth
of the analysis provided must deepen if users are to be able to address and correct the issues
identified by exascale tools.

Exascale Tool Development Strategy To meet the usability expectations and requirements
stated above in the face of increasing machine and application complexity, the community develop-
ing tools may rely on a strategy of layered interoperability. Since different tools often share needs
(e.g. code browsing, or binary analysis), support for tool components and sharing of tool infrastruc-
ture will be critical to develop the tools required for exascale in a timely fashion. Tool components
providing these functions that are shared between different types of tools will both lower the devel-
opment costs and deliver improved usability to users who will see common landmarks as they move
between tools. One such example of hierarchical interoperability in the existing tools space is the

ASCR Tools Challenges for Exascale Computing 3
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Performance API (PAPI) which is both a shared resource to tool developers as well as a common
reference frame for users as to the names and meaning of performance events and measures. Given
then expanding scope of what the goals of performance optimization are, minimizing not just wall
time but factors such as power or data movement, we see a need for similar expansion in scope for
such shared APIs.

Summary of Activity at the Workshop This section summarizes discussions conducted at
the DOE Workshop on Exascale Tools held during October 13-14, 2011 in Annapolis, MD. The
goals for the workshop were as follows:

1. Define objective criteria for assessing tools for exascale application development (debugging,
correctness, and performance) along a wide spectrum of challenges, namely power, locality,
resilience, etc.

2. Identify tools requirements and interfaces for hardware and system stack, particularly com-
pilers and run-time systems and metrics for success. Identify integrated systems solutions
rather than ad-hoc tools solutions.

3. Prioritize challenges for exascale tools, both generally and specifically to each tool category.

4. Prioritize options addressing the identified challenges.

5. Lay out a roadmap, with options, timeline, and rough cost estimates for needed exascale
research in the different tools category.

To that end, the workshop agenda included 8 presentations by leading experts in HPC tools from
DoE laboratories and academia, and three working sessions on (i) Performance Analysis Tools, (ii)
Debugging and Correctness Tools, and (iii) Cross-cutting Issues. A brief summary of the workshop
presentations and working sessions is included below, with a focus on past failures and successes as
well as recommendations for future directions. The remainder of the report dives deeper into the
technical details of these topics and also discusses their strategic implications in a broader context.

1.1 Background and User’s Perspective

Some background to this workshop comes from NNSA and Office of Science working groups and
related previous proposals. Additionally the landscape of what will be needed for exascale tools is
considerably informed by extrapolation of current petascale user perspectives onto likely exascale
target architectures. These discussions set the stage for the topical working sessions on performance
analysis, debugging and correctness, and finally a working session on cross-cutting issues.

The ASC working group on tools formed in June 2010 and has met three times since to define
and explore the needs across laboratories for the ASC community. The ASC perspective focuses on
a full spectrum of tools including performance, correctness, and debugging. Runtime and compilers
are not in scope for the ASC working group and left to vendors. The overall theme of the ASC
working group at the application level echoes a need for a broadening context of monitoring (chip
events, memory, power, locality, etc.) as well as a static analysis tools for evaluating code. At the
system and file-system level a move toward holistic system-wide monitoring as opposed to ad-hoc
specific tests is recommended. Bridging these two topics is a proposed strategy for hardware and
software information exchange and leveraging through shared APIs. Those APIs expose information
to the application for introspection and to the stakeholders in other ASC working group topics such

ASCR Tools Challenges for Exascale Computing 4



D
RA
FT

as scheduling and resource monitoring. The need for testing, integrating, and maintaining tools is
also highlighted.

Background for the workshop was also provided from the defined but unfunded Exascale Soft-
ware Center (ESC) activities, which had previously proposed a plan for exascale software including
tools. Looking at the tools sections of ESC one finds a common call for increased breadth of what
tools examine, which is in line with the ASC recommendations. Additionally, there are three unique
areas of emphasis. First is a focus on scalable sampling which is detailed as a tractable means to
deal with exascale concurrencies. Second is an explanation of the importance of attribution of both
performance and correctness measurements back to root causes in the code or hardware. Third
is the possibility of co-design as a means to improve hardware support for the needs of exascale
tools. There are additional common threads between ASC and ESC such as managing exascale
data volumes, analytics to provide insight, and software interoperability.

As exascale plans unfold, much remains to be determined about the precise nature of exascale
architectures and programming models. A great deal, however, can be learned from the perspectives
of the scientists who currently use the petascale computing resources at NERSC, OLCF, and ALCF
as tools to drive scientific discovery. To embrace and benefit from those perspectives, the workshop
used information from these facilities about current usage and needs in HPC tools as background
material. Many of the science teams using these facilities at large scale now are likely to be to early
adopters of exascale computing.

NERSC has a 4000+ user base, which spans a wide range of science applications and require-
ments. Through it’s annual user survey, trouble ticket system, and user software environment,
NERSC tracks when, how, and to a lesser degree why users reach for tools. The overall synopsis
is unsurprising in that users lack inherent interest in tools but do reach for them when there is
a performance or correctness issue which impedes their research. NERSC records invocations of
performance tools and debuggers and finds the usage of performance tools to be roughly twice the
amount of debuggers, a rising interest in filesystem and I/O tools for performance measurement,
and significant usage of lightweight monitoring tools that provide ongoing regular assessments of
performance from production workflows. Conversely, users express dissatisfaction with tools which
are cumbersome, have a steep learning curve, or impede their workflow from progressing. On the
exascale horizon, NERSC users will be well served by always-on lightweight tool layers that provide
dashboard level diagnostics that pro-actively indicate where application performance or correctness
issues may exist. From that point a variety of deeper-dive tools should be available electively as
needed.

OLCF reports a small but increasing fraction of users embracing performance and debugging
tools with an indication of interest in portable tools across multiple platforms and compilers. In
some sense this tracks not the overall measure of demand, but the fraction of users for which tools
are required to make forward progress as opposed to ongoing regular use of tools. A well defined
support model for both fixing tool defects and training in tool usage is seen to be important to
the future strategy for tools. As OLCF is heavily invested in GPU architectures and a significant
effort ongoing is to bridge the gap between existing tools and heterogeneous architectures for both
performance analysis and debugging. Those efforts combined DOE, TU Dresden, and vendor for
R&D efforts to deliver an interoperable tool chain that can operate at full system scales.

ALCF reported on both an inventory of tools that are either currently deployed or in process
of being deployed on IBM BlueGene architectures as well as forecasts for exascale tool use. A wide
spectrum of tools from the standard unix tools to BlueGene specific vendor tools are in place on
the BlueGene/P system and in planning or development for BlueGene/Q. These tools come from
vendors, academia, and including tools developed in-house, but the focus is on open source tools.
The ALCF BlueGene experience points towards the need for a robust DOE tools program going

ASCR Tools Challenges for Exascale Computing 5
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forward to exascale as even at petascale vendor-only strategies have not succeeded. In particular
the vendor’s ability to sustain tool development, support, and maintenance are difficult to maintain
after the initial R&D for the machine has been completed. Looking toward exascale, ALCF users
put emphasis on better hardware performance counters, tool support for architectural features such
as SMT and transactional memory, as well as thread profiling and correctness checking. Issues of
new or renewed emphasis for users also include memory usage and layout, network congestion,
OS level information on scheduling and memory usage, and finally the recurrent topic of bringing
power usage into the tools space.

The last presentation from the background and introduction to the workshop presented the
NNSA user perspective, which reinforced that many petascale issues remain to be solved as we
begin to examine exascale issues. This perspective emphasized the role of tools in production
computing and the need for tools to add to rather than detract from the science productivity of
users. In petascale and looking toward exascale, disruptive changes in HPC environments impede
the utility of computing resources as scientists must focus on porting and learning new tools. Thus,
there is a balance between what new programming models and tools offer and the new science that
could be explored if continuity in the HPC space can be provided. NNSA’s large integrated codes
are complex and hard to change. Any exascale directions that embrace radical changes in tools
or environments should recognize the negative impact on science output that may be incurred.
Looking at the exascale horizon NNSA users and staff see a need to provide a shared infrastructure
for tools, improved hardware and software APIs to wrap, monitor and introspect applications, and
a growing need to examine application issues both post-mortem and in-situ.

1.2 Characteristics of Exascale Systems Affecting Tools

Power Power consumption will be a significant constraint for exascale systems; thus, it will be
important for exascale applications to make efficient use of power. To keep power consumption and
chip temperatures within an allowable range, current microprocessors employ thermal throttling,
which involves adjusting clock frequency to one or more of its cores. On exascale systems, it is
expected that software will also be able to adjust voltages and frequencies as well to tailor power
consumption for code regions.

Failure Due to the enormous number of electronic components, exascale systems will fail more
frequently than systems today. This has two implications for tools. First, tools will need to provide
applications with mechanisms for monitoring failure so it can be managed appropriately. Second,
tools will need built-in fault tolerance to survive.

Extreme scale Exascale systems will contain millions of cores and billions of threads [42]. As a
result, performance tools for exascale systems will need both mechanisms and policies for coping
with scale during measurement, analysis, and presentation.

Multi-level parallelism Parallel applications will include multiple levels of parallelism such as
task parallelism between parts of a coupled application, process parallelism (e.g., multiple MPI
processes), thread-level parallelism within a process, as well as parallelism within a core, including
hardware multithreading, instruction level parallelism, pipelining, and short vector parallelism.

Dynamically varying hardware performance Today’s processors already employ frequency
and voltage scaling of cores to control power consumption and keep processor chips within their

ASCR Tools Challenges for Exascale Computing 6
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target thermal design envelope. When such scaling is applied, both the energy efficiency and
computational power of cores changes. In exascale-class systems, other factors will cause non-
uniformities, including process variations that may cause some cores or whole chips to perform
differently, as well as hardware recovery of errors that may either be transient or persistent.

Heterogeneous cores Processors in exascale systems are expected to contain multiple hetero-
geneous cores. To keep power consumption low, most cores will be low-power lightweight cores
optimized for throughput; a smaller number of latency optimized cores will be available to execute
less parallelizable work. Performance tools will need to assess how well computations are utilizing
each kind of cores as well as the overall utilization of the system.

Complex memory subsystems Data movement is much more costly than communication.
Exascale systems are expected to make use of deep memory hierarchies to avoid the latency and
power costs of off-chip accesses. Multi-socket nodes will contain NUMA memory domains.

Hardware support for resource management For efficiency and performance, hardware will
play an increasingly central role for managing shared resources. Specifically, hardware will play an
integral role in managing thread-level parallelism and communication flow control.

Asynchrony To tolerate latency and overlap I/O and communication with computation, exascale
applications will need to make extensive use of asynchronous I/O and communication. Further-
more, computation on different kinds of cores may be decoupled as well. Today, for performance
computations on GPU accelerators are most commonly launched using an asynchronous interface.

Adaptive software As described previously, hardware performance will have dynamic perfor-
mance characteristics. To cope with such performance variability, hardware and software systems
will need to adaptively schedule computation among processor cores.

Hybrid programming models Programs on exascale systems will likely include legacy compo-
nents in addition to components based on emerging models. Measurement and analysis of hybrid
programs will undoubtedly be harder if the programming models used for its components are dis-
similar.

1.3 Performance Analysis Tools

The workshop discussion on performance analysis tools opened with a discussion about what the
objectives and units of performance are. In some sense, science per unit time has always been
the intended goal of HPC computing performance. Over many generations that has been reduced
to the more measurable quantities of wall clock times, FLOP rates, computational intensity, etc.
What is unique about exascale is how these simplistic measures of performance are being met
with constraints on power consumption and data movement. Accordingly we must re-calibrate our
intended goals in attaining performance to accommodate and inform this broader sense of what
performance is all about. To adjust to these new constraints, the scope of what is monitored must
broaden to include power and thermal data at chip, node, and possibly facilities levels.

There must also be a re-calibration of performance expectations through performance assertions
that describe the fractional utilization of the rate limiting resource stands in the way of performance.
It may be ok to run half as fast if one understands that a shared resource is being contended for.
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Another balanced way to set performance expectations is by relative comparisons. Differential
profiling, running the same application at differing scales or workload levels, can both serve to
describe performance in ways that no single number can. At exascale it may be important to think
about performance in terms of distributions and expectations rather than as simple static metrics.

Moving on from the topical discussion of the nature of performance, the group identified the
increasing need to provide not just metrics but attribution and root causes indications about those
metrics. A discussion on what the right semantics and context to provide such attribution pointed
to the need to place performance metrics and analysis in a broader context of the system-wide data,
allowing for inter-job effects, and to easier and more accurately annotate within a job the phases of
computation and boundaries between coupled computations in, e.g., mutli-physics or MPMD codes.
The effects of inter-job resource contention are already widely felt in subsystems like filesystems and
interconnects. At exascale the need to take a facility level view of performance analysis will become
vital. The semantics for root-cause attribution are also potentially impacted by the adoption of
domain specific languages (DSL’s), which both raise the level of abstraction in attribution, but also
provide a smaller possibly more well known set of points to direct instrumentation for attribution.

Having determined from the previous discussions that the scope and nature of performance
analysis at exascale will be markedly different, the group turned to the practical discussion of how
and whether the needed monitoring can be achieved. The interfaces in hardware and software
that will be required must meet certain design goals. First, both static and dynamic analysis
will be required. Second, the interfaces must recognize that there will potentially be multiple
consumers of measured events. To the latter point it becomes important that the APIs by which
tools gather their data, and by which applications potentially introspect on their performance, be
systematically defined and allow multiple contexts for monitoring. An API that spans multiple
performance contexts (chip counters, thermal, power, interconnect, etc.) may be provided using
uniform semantics and a components approach to define the contexts. One significant challenge
may present itself in events which essentially can not be observed. For instance, if the clock rate
is throttled in hardware based on thermal conditions, tools may have, at best, secondary means to
gather what has happened and why.

Exascale tools that monitor and report on data from these APIs will need to span multiple
use cases. The spectrum of shrink-wrapped easy to use tools to experts-only tools will be needed
to maintain performance at exascale. Making performance tools a first-class element in exascale
software was discussed. The need to ask performance questions after a run has started, to auto-tune
an application, or to dump a detailed snapshot of an application’s performance state and allow if
to continue running normally are all modes that should be accommodated. Allowing users to insert
performance assertions into their code that, if not met, take action on their behalf will be best
accomplished with some inter-operation with compiler and runtime engineering.

Techniques described later in this report, such as sampling and profiling, are a crucial means to
achieving the scalability required for exascale. Data volumes which scale with concurrency must be
mitigated if performance tools are to find adoption outside the most heroic cases where large quotas
and extreme slowdowns are tolerated. A hierarchical approach for exascale seems fitting whereby
easy performance analysis is made easy and in-depth tools are available to dissect performance
challenges in detail. Likewise a combination of in-situ and off-line analysis of performance data
will be needed. Where possible, finding categories or clusters of performance states may assist in
the data challenge. Likewise the performance attribution discussed above can aid in this area by
informing which pieces of performance data are actionable and worth saving versus the ones which
may be ignored.

Lastly, we discussed the topic of machine learning research and its potentially untapped utility
in performance analysis tools. Exascale will broaden the number of performance data gathered
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both as concurrency goes up and as the jobs running in an exascale machine are imagined to be
large in number and interacting. Additionally the potential for auto-tuning at exascale will be
greater than ever. These two avenues open the door for a variety of interesting exascale research
topics. Broadly, we may classify them as machine learning between jobs, i.e., understanding at the
workload and inter-job contention level the dynamics and expectations of performance at a system
level, and machine learning within jobs or applications where the application seeks out patterns or
structure in how it can best adapt to meet performance goals. Both directions are simultaneously
achievable and indeed synergistic. An operational exascale machine will itself be a complex system
worthy of study and research. Machine learning likely has important roles in that regard. Finally,
it was noted that the first topic on the expanding nature of performance measurement must be
noted when the objectives of machine learning are put in place.

Recurrent exascale themes in this discussion were the broadening of scope of performance mea-
surement topics, the broadening of scope of analysis from the application to the workload, chal-
lenges due to concurrency and data issues, the need for attribution of root causes, as well as an
acknowledgment of the need for a spectrum of tools for a wide range of use cases.

1.4 Debugging and Correctness Tools

The Debugging and Correctness Tools session was organized around a series of questions posed
initially to the panelists and then opened to all attendees for comment.

The first topic considered was the impact of streaming processors (especially GPUs) on debug-
ging. Part of the tools challenge for streaming processors is that the programming model is still
evolving rapidly. Most attendees felt that the programming model would eventually converge into
something higher level that would permit programmers to abstract away many of the details of
streaming processors (and certainly the details of specific vendors processors). From a standpoint
of debugging, additional complexity due to streaming processors arises from the larger number of
threads, the separated addresses spaces, and the difficulty in fault and breakpoint containment.
Memory debugging of unique hardware features such as scratchpad memory is critical. It is im-
portant that, when developing new programming models such as domain specific languages (DSL),
debugging is considered from the start. Likewise, additional extensions to binary file formats such
as DWARF might be needed to handle debugging DSLs.

One potential new challenge for exascale debugging will be the power limits. Since debuggers
generally require additional threads and code to run to support them, it is possible that the debugger
could put the entire application over its power budget. Ways to deal with this could include
dedicating resources for debugging (i.e., allocating extra nodes if the debugger is used). It was also
felt that for debugging, slowing down nodes (to bring the application back within power limits)
would be acceptable.

Fault tolerance, especially when the user is expected to supply some of the detection or recovery
code, will further complicate debugging for exascale. Debugging environments will need to support
injecting faults (and multi-faults too) into an application to allow testing of these mechanisms.

Debugging at full scale will still be required to find bugs. Thus, online tools that are able to find
equivalence classes or groups will be critical. Sampling will play an increasing role, but effectively
using sampling for anomaly detection is hard.

Some additional hardware support may be required for debugging. Examples might include
global timestamps or improved watchpoint registers.

Program analysis techniques (static analysis) could help to identify problems at smaller scale.
For example, using symbolic techniques to reduce problems to examples that require fewer threads.
However, it will be important for tools to require constant or logarithmic time proportional to

ASCR Tools Challenges for Exascale Computing 9



D
RA
FT

the number of threads (given the large number of threads expected). In addition, improved type
systems may improve both the correctness of programs and the quality of information from tools.
The growth in popularity of scripting languages and some styles of domain specific languages has
made the available type information worse, not better, recently. There is a need to either enhance
programming models to support richer typing, or develop new type inferencing systems to discover
type information that is not explicitly defined.

1.5 Cross-cutting and Tool Infrastructure Issues

To join the distinct tools topics into a coherent program, the workshop discussed the cross-cutting
issues that relate to both performance, correctness, and debugging tools. This also included an
extensive coverage of tool infrastructure requirements and challenges. All or most of the tool areas
discussed will need to interface with both applications, runtimes, and the underlying architecture.
Likewise exascale tools, and exascale software more generally, will need to be engineered and tested
in ways that make them reliable resources for the computing community.

The cross-cutting topic of interoperable APIs for tools is wide ranging but tractable. Most
tools will need some functionality to connect and detach from applications, to scalably transfer
and aggregate data from many threads/tasks, and provide analytics and visualization. Many such
APIs exist but they are not integrated or streamlined for use at exascale. We need to redesign
them to create the basis for a common shared tool component infrastructure that maintains a set
of independent and scalable components and uses them to enable quick assembly of components
into new and scenario specific tools.

Software engineering topics in this space are numerous and already under-served at petascale.
There is a need in the HPC software community to raise the bar when it comes to design, build/test,
packaging, and release of software tools. Models where tool developers do custom installations on
various HPC resources are common and undercut the notion of HPC tools as robust and reliable
software products. Exposing build/test data to the broader community, providing attention to
making software packages such as RPMs that are easily deployable, and improved documentation
will all increase the positive impacts of exascale tools.

ASCR Tools Challenges for Exascale Computing 10



D
RA
FT

2 Performance Analysis Tools

Harnessing the potential of exascale platforms will be a daunting task because of their unprece-
dented complexity and scale. Hardware and software support that helps users identify performance
bottlenecks, understand their causes, and identify how they might be ameliorated will be crucial
for using these machines effectively.

It is critical to note that HPC performance tools do not stand alone. Rather, they exist as part
of a HPC ecosystem that includes both hardware and software; these tools are critically dependent
on this ecosystem for functionality and features. While many other parts of the software stack
leverage abstraction to reduce complexity, performance tools don’t have this luxury; they must
interact with all system components to gather information about resource consumption, inefficien-
cies, and opportunities for improvement. Specifically, performance tools require access to state
maintained by the hardware, operating system, programming model runtime systems, compilers,
and applications. For each significant hardware and software component they must have interfaces
to gather and analyze information, often at an extremely detailed level. All of the hardware and
software components must be designed with appropriate interfaces for tools. Lack of support from
any hardware or software component in the HPC ecosystem can prevent effective tools from being
developed and deployed.

Traditionally, the role of performance tools on parallel systems has been to support measure-
ment, analysis, attribution, and presentation of application performance measurements for post-
mortem inspection. However, to get the most out of exascale hardware platforms, applications will
also need to monitor, analyze, and respond to emerging performance and reliability issues. Specifi-
cally, applications will need to be aware of their own performance characteristics, such as declining
spatial and temporal locality as data objects and their relationships evolve during execution, as
well as the mapping of computation, communication and I/O onto physical resources. In addition,
applications will need to monitor and react to dynamic performance, adaptive decisions by the
runtime, and failure characteristics of the hardware on which they execute.

Section 2.1 outlines some key research challenges for performance tools for exascale systems.
Section 2.2 describes support that tools need from other parts of the ecosystem. Finally, Section 2.3
briefy summarizes the state of the art in performance tools.

2.1 Research Challenges for Performance Tools on Exascale Platforms

The need for performance analysis and tuning of software on exascale systems will span the entire
software stack. Traditionally, tools have focused on applications alone. In addition to traditional
tools for post-mortem analysis of application performance, performance tools for exascale software
must also provide interfaces for on-line performance measurement and analysis, which will be
needed to guide adaptive applications. The requirement for on-line analysis applies to many of the
problems that performance tools must address.

2.1.1 Minimizing Power Consumption

To date, power consumption has been managed by hardware alone. To tackle the problem of power
consumption more effectively, it will be important for exascale systems to make observation of
power consumption accessible to software as well.

There are two ways that software can assist with reducing power consumption. First, perfor-
mance tools will need to be able to measure and attribute power consumption to application and
library source code. Such tool capabilities will enable users to identify power inefficiencies that can
be improved by adjusting data structures and/or executable code associated with the inefficiency.
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Second, as applications execute, they will need to be able to measure power consumed by partic-
ular code regions. For inefficient code regions that lack a way to improve efficiency by transforming
code or data, it may be beneficial for an application to lower the clock rate for a code region so that
processor cores aren’t consuming as much power while waiting for long latency memory operations
to complete. In other cases, a program may be able to improve its power efficiency at runtime by
reorganizing the data it is manipulating to improve spatial and temporal locality of data accesses.
For instances, reordering the nodes and edges in a graph can improve the efficiency of repeated
traversals.

Constructing power-aware tools and applications will require hardware capabilities for measur-
ing power consumption. Further study is necessary to understand what sort of power measurements
will be most useful. For instance, one could measure power for processors, memories, and intercon-
nects within and across nodes. Without a finer granularity of measurements, e.g., at the core level,
it will be hard to make power feedback actionable during post-mortem analysis or online.

At the same time we must also consider the power consumption of the tools themselves. Their
power budget will add to the overall power consumption and when applications operate close to
the maximal available peak power, tools must be careful to not push the application beyond those
limits or to force executions at smaller scale where the results may be not appropriate or helpful.

2.1.2 Coping with Failure

Performance tools for exascale systems will need to deal with failure in three distinctly different
ways. First, measurement, analysis, and presentation mechanisms themselves must be resilient or
tolerant of failures. While existing tools can tolerate some kinds failures, e.g. missing data for
some threads or processors, more pervasive fault tolerance within tools will be needed. Second,
performance tools will need to measure the frequency and cost of failures and recovery actions
by applications. Third, tools must automatically adjust to changing system and application con-
figurations caused by a recovery process and must be able to continue meaningful and consist
measurements after an application restart. The latter requires a significantly deeper integration
into the system stack and into fault tolerance techniques than currently possible.

2.1.3 Managing Performance Data at Scale

One of the core challenges for performance tools at exascale will be the scalable collection and
analysis of performance data. With millions of cores and billions of threads, measuring the perfor-
mance of exascale applications will involve collecting a flood of data to ensure that measurements
capture the range of behaviors. The scale of executions will make capturing comprehensive traces
for long-running executions impractical. Designing performance analysis measurement and analysis
strategies that deliver insight without exhaustive data will be important.

Different data organizations are appropriate for measurement, analysis and presentation of
performance data. For instance, thread-centric measurements are the easiest to record because
each thread can record its own measurements independently. However, resource-centric, time-
centric, code-centric, and data-centric perspectives are more appropriate for analyzing certain kinds
of performance problems. Because of the large data volumes involved, recording, analyzing, and
transforming measurement data must necessarily employ scalable parallelism. While it will often
be useful to distill performance data into compact summaries, e.g., a profile, to obtain a high-level
perspective of application performance, understanding performance problems that vary over space
and time will necessarily require significant amounts of data. Storing large volumes of performance
data in forms suited to different kinds of analyses and presentations will require careful design of
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multiple persistent representations. While a dense representation may simplify the task of locating
a particular piece of data, a sparse representation will often be dramatically more compact. The
design of appropriate persistent representations for exascale performance data will need to consider
space, access patterns, and the time complexity of reconstructing desired statistics or renderings.

2.1.4 Assessing Data Movement

On exascale systems, data movement and power consumption will be closely related. Current
projections are that in exascale systems reading or writing a value from DRAM will require a
factor of 800 more power than a double precision floating point operation [12]. Even just moving a
double precision value across a chip will cost over a factor of ten more than computing with it [12].
As a result, keeping power consumption low will require minimizing data movement.

Exascale systems are expected to employ multi-level memory hierarchies to keep data on chip
and close to the processor cores manipulating it. While one can monitor a thread’s data access
patterns with instrumentation, without using a simulator understanding the interplay between
threads, data at various levels in the memory hierarchy, and policies for scheduling computation
will require hardware support. Only with hardware monitoring will it be possible to identify the
level of the memory hierarchy where the data is resident as well as the latency and power associated
with moving it to the requesting thread. It will be important to measure data movement up and
down through the memory hierarchy as well as across and between chips within a node.

Performance tools for exascale systems will need to leverage hardware monitoring capabilities
to identify data objects that are the subjects of inefficient access patterns, identify code regions
that access data objects inefficiently, quantify the costs of these inefficiencies, and provide guidance
as to how the program might be improved.

2.1.5 Resolving Network Performance Bottlenecks

The bisection bandwidth of HPC systems is not growing linearly with their computational power.
For that reason, we expect that tools that help identify, explain, and resolve performance prob-
lems due to network congestion will be important on exascale platforms. Recent experience has
shown that dramatic improvements in application performance can result by adjusting how appli-
cations use communication networks in tightly-coupled HPC systems. Examples include using a
better embedding of an application’s logical communication topology into the physical topology of
a machine [21] or by spreading communication over time [33]. As a result, performance tools for
exascale systems will need to address measurement, analysis, attribution, diagnosis, and presenta-
tion of performance problems on communication networks. I/O networks will need similar support
for assessing how and why performance problems arise.

2.1.6 Assessing the Impact of Asynchronous Operations

On today’s systems, asynchronous (non-blocking) operations are used for interprocess communica-
tion, I/O, and scheduling work on GPGPUs. On exascale systems, asynchronous operations will be
ubiquitous for efficiency. In the presence of asynchrony, the causes of performance problems may
become far removed from the symptoms. Performance tools must measure asynchronous operations
and assess their impact on system performance.

Some important questions performance tools will need to answer include assessing whether the
presence of asynchronous operations causing a performance benefit rather than a loss. In today’s
communication networks, asynchronous operations are treated as “unexpected messages” and often
produce more trouble than benefit. For exascale systems, it will be critical to adjust mechanisms
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and tune policies so that applications can benefit from asynchrony. Tools will need to derive answers
to some of the following questions:

• Are asynchronous operations being used effectively to overlap different kinds of activities?

• Is one kind of activity stalled waiting for another?

• Can we bound how much improvement might be achieved by better exploiting asynchrony?

2.1.7 Tuning Adaptive Resource Management Policies

For reasons described earlier, exascale platforms will require adaptive algorithms for mapping and
scheduling communication, computation, and I/O. Tool support for gaining insight into the behav-
ior resulting from such algorithms and identifying opportunities for improving their performance
will be a significant new challenge for performance tools. Any significant intrusion of the tools into
the normal operation of such software is likely to substantially alter the behavior of the system
under measurement. Measurement, analysis, and presentation techniques that provide insight into
the behavior of such algorithms and assess how well they are managing the resources under their
control will be needed.

Monitoring the shared resources (shared cache, bandwidth and pipe line usage for SMT) Per-
thread information is not enough to reflect the shared resouce contention. System-wide profiling is
necessary. A naive analysis method to blame the costs to causes is as follows: (1) Use a separate
thread called monitoring thread to sample (EBS or proxy based sampling) the shared events. (2)
In the interrupt handler in monitoring thread, send signals to other threads which read the event
consumption in per-thread mode. Attribute the system-wide consumption to the top two threads
with the largest events in per-thread mode.

For data presentation, we can create a new view to show the shared event consumption (system
wide) according to the time line. Together with the trace view, we can know the time interval with
high shared event consumption is corresponding to the concurrent execution of functions in each
thread. Note that the contention should be related to per-thread performance and time interval
(actually the schedule of the threads).

2.1.8 Diagnosing Root Causes of Performance Problems

In many cases, when measuring the performance of parallel programs it is straightforward to pin-
point symptoms of inefficiency. For instance, idle worker threads in a multithreaded program indi-
cate that there is insufficient parallelism to keep all workers busy. Similarly, a thread spin-waiting
for a lock in a multithreaded program is a symptom of lock contention. However, identifying the
root causes of such performance problems is a different matter. Recently, it has been shown that
the root cause of each of these problems can be pinpointed and quantified with a problem-focused
measurement strategy designed to transfer blame from threads suffering the symptoms of ineffi-
ciency to the threads causing the inefficiency [44,47]. Being able to quantify losses associated with
such abstract performance problems and attribute them to source code is important if one wants
to improve the performance of complex parallel programs.

On exascale systems, the root causes of application performance problems will be difficult
to identify using traditional measurement strategies because of system complexity. This will be
especially true within nodes because of their massive threaded parallelism, heterogeneous cores,
dynamically varying hardware performance, and adaptive software. Developing problem-focused
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measurement strategies along with analysis capabilities tailored to interpret the resulting measure-
ment data will be important for diagnosing root causes of performance problems in the face of this
complexity.

2.1.9 Analyzing Contention for Shared Resources

A particularly difficult performance analysis challenge is understanding contention for shared re-
sources. This problem arises with cores shared between multiple hardware threads, cache shared
between multiple threads and/or cores, as well as with memory and communication bandwidth
shared by all threads on a chip. In today’s systems, it can be hard to understand the performance
impact of having threads compete for shared resources of various kinds. With exascale systems, the
enormous number of threads involved will make it critical to develop techniques for measuring and
quantifying the performance impact of contention. Of course, for such measurements and analysis
to be actionable, tools must attribute the costs of contention for shared resources to code.

To improve application performance on exascale systems, it will be important to determine
whether or not an application generates significant contention for a particular shared resources
such as the interconnect between nodes. Does such contention occur in bursts or is it continuous?
Is the load placed on a shared resource by various threads on a node uniform or non-uniform? The
answers to these question will frame the approaches that may be useful for ameliorating contention
to improve performance.

2.1.10 Coping with Hybrid Architectures

Exascale architectures are likely to contain a heterogeneous mix of both throughput-optimized and
latency-optimized cores. One must measure and assess performance carefully depending upon the
application developer’s objective. One objective might be to minimize power consumption, which
would likely require using the most appropriate type of core for the workload at hand. Another
might be to minimize execution time. A third might be to balance both power consumption and
execution time.

Due to the fact that latency-optimized and throughput-optimized cores are rather different,
the performance of each will need to be measured separately. A dependence on work running
on one may require the other to stall. Thus, analyzing the performance of heterogeneous will
consist of analyzing the performance of each kind of cores separately as well as analyzing the
relationship between them. Since measurement support for latency-tolerant cores is in a fledgling
state, the broader problem of assessing the performance of heterogeneous nodes has not received
much attention to date.

2.1.11 Coping with Massive Threading

At exascale, the use of threading will no longer be optional for applications. Without threads it will
not be possible to reach the concurrency levels needed for exascale while staying within the confines
of the limited node memory. Further, new architecture paradigms, like GPGPUs, explicitly rely on
threading. However, tool support for threading is currently still weak and new approaches will be
needed to provide the user with performance analysis of threaded programming models. Analysis
of threaded code will include understanding overheads associated with threading (e.g., start up
costs for threaded regions) and assessing whether applications are exploiting threaded performance
effectively.
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2.1.12 Data Mining and Presentation

Rather than simply presenting performance measurement data to application developers for them
to explore, the complexity and scale of exascale executions will require tools to do more to direct
attention to problems and phenomena of interest. Presentation tools must be scalable to cope
with the volume of measurement data from exascale platforms. Useful techniques for analyzing
executions of enormous scale will include adaptively and selectively recording of performance data,
in situ or online analysis as well as data compression.

Regardless of how data is collected and analyzed, it will be important to present performance
analysis results in a scalable actionable form. Different views of performance data are useful for
tackling different kinds of problems. Code-centric views enable one to pinpoint performance bot-
tlenecks associated with program regions. Data-centric views enable one to better understand the
costs associated with particular program data structures. Time-centric views help one better un-
derstand how system state, application data, and process activity evolves over time. In addition, it
will be worthwhile to explore alternative approaches for presenting performance data, e.g., mapping
it to the physical domain familiar to application developers or to the physical topology of the target
platform.

2.2 Cross-cutting Issues

Since performance tools must interact with all of the hardware and software components in parallel
systems, it is critical that each of the key components in ecosystem provide the necessary capabilities
and interfaces to support tools. Here we outline requirements for tools starting from the hardware
up.

2.2.1 Hardware Support for Performance Monitoring and Adaptation

Hardware support for performance monitoring of exascale systems is a topic that merits co-design
with tools. The design of new hardware technologies must consider tool support required to under-
stand correctness and efficiency. Below are a set of things that will require hardware performance
monitoring for tools to have adequate insight into application performance and efficiency and to
attribute any performance measurements back to the right locations and data structures within
the application.

Power Power will be one of the defining problems on exascale systems. While the hardware
will need to monitor power and apply thermal throttling when necessary to protect its integrity,
various layers in the software stack will need to measure power consumption to (a) attribute power
consumption to program code and data for post-mortem analysis, and (b) guide on-line adapta-
tion where program actions (e.g., reordering data) can reduce power consumption. While power
monitoring support at the board or rack level could be used to guide system-wide adaptation; finer
grain monitoring of or within chips will be necessary to guide application-based adaptation.

Failure Hardware support for monitoring failures in any subsystem will be indispensable. Fail-
ure identification will be needed in memories (e.g., ECC), communication (e.g., checksums), and
computation. Ideally, failures should be able to trigger interrupts so that they can be associated
with code and data affected.
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Processors Hardware performance monitoring is critical for providing insight into application
behavior. Exascale systems will need hardware support for measuring resource consumption, inef-
ficiency, delay, and power consumption. Two important capabilities for monitoring hardware are
support for problem determination via cycle accounting and accurate attribution. For the former,
performance monitoring hardware should support a set of events that enable one to hierarchically
decompose execution cycles into various categories, with an emphasis on understanding underlying
causes for stall cycles. For the latter, it must be possible to attribute performance information
sufficiently accurately to program code and data to guide optimization. Most processors today fall
short on these requirements.

Memory On exascale systems, data movement will cost more than computation. Hardware
support for measuring data movement between levels of the memory hierarchy and between sockets
will be critical to obtaining insight into an application’s behavior to improve performance and
reduce energy consumption. Important characteristics to measure will include latency, memory
parallelism, bandwidth utilization, as well as measures that will provide insight into locality and
contention.

Network Getting the most out of the various networks in exascale machines will require having
hardware monitoring that will enable one to identify and distinguish various kinds of inefficiencies,
including hot-spot contention, bursty utilization, under-utilization of available channels, and logical
to physical mappings that cause congestion.

2.2.2 Operating System Interfaces

Full access to hardware performance monitoring capabilities. Current operating systems
don’t provide access to and control of all hardware monitoring hardware available in today’s micro-
processors and networks. In future HPC systems, all appropriate hardware monitoring performance
monitoring capabilities must be exposed to software tools.

Interfaces for inquiry and control. Operating systems for exascale machines will need to
provide interfaces that support inquiry and control related to logical to physical mappings of data,
computation, communication and I/O.

Interval timer functionality. A common weakness of interval timer modes on most operating
systems is that one can only perform real time profiling of single-threaded applications; thread-
level profiling is only supported using the ITIMER PROF mode, which measures only the time spent
by a thread or spent by the kernel on the thread’s behalf, but not real time. Only the Solaris
operating system supports the ITIMER REALPROF profiling mode, which enables one to perform
real time profiling of multithreaded programs and provide a detailed accounting of how much
time a thread spent in each micro state [30]. Another benefit of ITIMER REALPROF is that it does
not deliver interrupts to a thread while it is blocked at a system call. Without this profiling
capability, itimer-based profiling of multithreaded applications can fail to properly account for
time spent at some blocking system calls. Operating systems for exascale platforms will need
the capabilities of ITIMER REALPROF for efficient and accurate time-based profiling of massively
multithreaded programs.
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Support for in situ analysis Operating systems will need to provide sufficient control over
process and thread thread placement to facilitate co-locating tool components with application
processes for data reduction or in-situ analysis.

2.2.3 Library Interfaces for Measurement and Control

Performance tools need to intercept certain functions to ensure that tools have the opportunity
to perform bookkeeping when the function is invoked. Examples of functions that need to be
intercepted include those associated with creation and finalization of threads; initialization and
finalization of processes; and signal delivery to name just a few. Instrumentation of such functions
is used by tools to ensure that necessary tool control operations, such as initialization or finalization
of performance data for a thread, can be performed at appropriate times. Tools use one of two
approaches to intercept such operations: interface wrapping or binary rewriting. Library interfaces
must be designed to make intercepting interface operations easy.

Interfaces for performance introspection and adaptation To enable system software and
applications to adapt their behavior runtime in the face of their changing needs and platform state,
many of the layers of the software stack performance introspection, which enable applications and
other parts of the software stack to observe characteristics of their own performance. We expect that
applications will need to measure and tune the performance of communication, I/O, and runtime
systems as an execution proceeds. To support adaptation, it must also be possible to tune the
characteristics of different software layers. Such tuning might come in the form of adjusting resource
provisioning, or changing management policies. The mechanisms to support such capabilities across
all layers of the software stack are not well understood at present. Understanding exactly what is
needed will require further investigation.

2.2.4 Compiler and Runtime Support for Performance Attribution

Compilers record several kinds of information necessary for attributing performance information
back to an application and runtime libraries. The most important kinds of information for this
purpose are addresses of function entry points, a line map for relating machine instructions back
to source code lines, and debugging information, which includes details about inlined code. Today,
many compilers fail to provide adequate information for mapping performance back to source
code. To avoid problems understanding the performance of exascale systems, procurements of
exascale systems must specifically require that compilers and runtime systems provide mappings
with suitable accuracy. Run-time libraries for execution models will need to provide support for
logical unwinding of call stacks so that costs can be attributed to their calling context. Further,
the run time system stack must export any adaptivity decisions to allow tools to track changes in
the system and to provide the necessary translation for performance data.

2.3 State of the Art

Trace-based tools for measuring parallel performance, e.g., Vampir [28], Falcon [18], Jumpshot [57],
MPICL [55], Caubet et al.’s tracer for OpenMP execution [7], the EPILOG tracing mechanisms [52],
TAU [26] or Open|SpeedShop [37], are commonly used to provide insight into time-varying aspects of
an application’s behavior. However, on large-scale systems comprehensive tracing can be costly and
produce massive trace files [49]. Tools like Scalasca [54] therefore provide options to automatically
analyze traces and deliver only relevant information to the user. As another approach to control
the size of traces yet provide insight into time-varying behavior, the HPCToolkit performance tools
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introduce a new paradigm for trace analysis of parallel programs based on traces of call stack
samples [45].

In contrast to traces, performance measurement approaches that collect summaries based on
synchronous monitoring of library calls (e.g., [49, 50]) or profiles based on asynchronous events
(e.g., [1,11]) more readily scale to large systems because they yield compact measurement data for
each thread or process; the size of this data is largely independent of execution time. Synchronous
monitoring of communication calls, e.g., by mpiP [50] or Photon [49], yields detailed information
about communication activity but only coarsely summarizes computation. In contrast, call path
profiles collected using asynchronous event triggers can attribute all costs in a parallel execution
(e.g., computation, data movement, or waiting) to the full calling contexts in which they are
incurred [1, 31]. An advantage of such asynchronous monitoring is that it can provide detailed
attribution of costs everywhere rather than just at interface functions as synchronous monitoring
does.

Tools for measurement and analysis of parallel application performance are often model de-
pendent. Examples include libraries or instrumentation for monitoring MPI communication
(e.g., [28, 49, 50, 56]), interfaces for monitoring OpenMP programs (e.g., [7, 25]), or global address
space languages (e.g., [43]). In contrast, sampling techniques used by tools, e.g., gprof [16] and
Open|SpeedShop [37], or call path profiling, such as that used by HPCToolkit [1] and Oracle’s Sun
Studio [31], are model independent.

Performance tools also differ with respect to their strategy for instrumenting applications.
TAU [26], OPARI [25], and VampirTrace [3] among others, add instrumentation to source code
during the build process. Model-dependent strategies often use instrumented libraries [7,22–24,49].
Other tools analyze unmodified application binaries by using static instrumentation (e.g., SGI’s
SpeedShop tools [39]), or dynamic instrumentation (e.g., Dyninst [5]) or rely on library preloading,
as do SGI’s perfex [11], PapiEx [27], Open|SpeedShop [37], and HPCToolkit [1, 15].

Tools for analyzing bottlenecks in parallel programs are typically problem focused. Strategies
based on instrumentation of communication libraries, such as Photon and mpiP, focus only on
communication performance. Vetter [48] describes an assisted learning based system that ana-
lyzes MPI traces and automatically classifies communication inefficiencies, based on the duration
of primitives such as blocking and nonblocking send and receive. EXPERT [53] also examines
communication traces for patterns that correspond to known inefficiencies. In contrast, general
toolkits, e.g., HPCToolkit [1], Open|SpeedShop [37], and TAU [26], are problem-independent.

Performance analysis tools analyze scalability in different ways. mpiP [50] uses a strategy called
rank-based correlation to qualitatively evaluate the scalability of MPI communication primitives.
An MPI communication routine is said not to scale if its rank among other MPI calls performed
by the application increases significantly when the number of processors increases. Using differen-
tial analysis of call path profiles, HPCToolkit can pinpoint and quantify scaling losses in parallel
programs regardless of their cause [10,46].

Memory hierarchy simulators, e.g., CacheGrind [29] or Sigma [13], can provide detailed feedback
about memory hierarchy performance; however, such simulators may slow down an execution by two
to three orders of magnitude. In contrast, Acumem ThreadSpotter [41] uses sampling techniques
to gain insight into memory hierarchy performance at much lower overhead.

Lightweight tools, e.g., IPM [40], provide summary statistics about the amount of commu-
nication and computation by process. While such summary information is too coarse to guide
performance tuning, it can provide insight into an application’s overall performance.

Most performance tools that gather detailed measurements with hardware performance counters
present raw measurement data. In contrast, PerfExpert [6], which uses HPCToolkit to gather
performance data using hardware counters, attempts to diagnose the nature of node performance
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bottlenecks by assessing whether they are due to the memory hierarchy, floating point instructions,
integer instructions, or branches.

Basic performance visualization is typically done manually relying on tools like gnuplot or Excel.
Some tool sets, like TAU [26], enable more sophisticated performance visualizations by providing
displays for a range of configurable metrics [19]. Further, several tools exist that display timelines
for message traces (e.g., Vampir [28], Jumpshot [57], or Paraver [32]) or call path traces [45].
Recent research has focused on using scientific visualization techniques to explore performance
problems [38].

In addition to the aforementioned performance tools, several groups have been working on paral-
lel tool infrastructures that support the development of scalable tools. Most notable in this area are
Dyninst [4], a library for dynamic binary instrumentation; MRNet, the Multicast-Reduction Net-
work [34], which allows efficient data management for large scale tool environments; PNMPI [36],
an infrastructure to virtualize MPI tools; and the Component Based Tool Framework (CBTF) [8],
a generic infrastructure for assembling tools from independent components.

3 Debugging and Correctness Tools

The increased complexity and core counts of exascale systems will diminish the effectiveness of tra-
ditional interactive debuggers. To cope with the complexity of exascale executions, application de-
velopers will need additional tools that can help them to either automatically or semi-automatically
reduce the problem to smaller core counts or to detect the problem itself. Tool support for debug-
ging at exascale can and should range from simple approaches that cluster processes into similar
groups to automatic root cause analysis tools that directly point users to the most probable causes
for observed behaviors. Further, many solutions will no longer be either static or dynamic, but
rather require an integrated approach that is capable of combining static information extracted
from an application’s source or binary code with dynamically gathered and aggregated data.

3.1 Research Challenges for Correctness Tools on Exascale Platforms

There is a wide range of issues that challenge the development of correctness tools for exascale
platforms. These issues stem from the extreme scale of such systems, increased complexities in the
architectures, and new programming models and languages.

3.1.1 Scaling Debugging Techniques

While many debugging and correctness problems can be reproduced at smaller scales, where they
can be analyzed more easily, there will always be problems that can either not be reproduced at
smaller, non-production scales. As a consequence, we will need tools, including debugging and
correctness tools, that can operate at the full scale of the machine. To achieve this, we need to
provide tools such as MRNet to the tool developers that simplify the construction of tools at scale;
the goal is to lower the barrier to entry for innovative and small-project researchers to experiment
in this area.

Such tools will be necessary to debug both applications themselves, which will be expected to
scale to the size of the whole machine for capability runs, and the system software stack. The
latter often cannot be fully tested at the vendor site before delivery, since vendors often don’t have
access to the largest system configuration, in particular in the context of DOE machines. As a
consequence, we not only need system level debugging tools, but we will also need to provide users
with tools that can help distinguish between application and system problems.
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To scale debugging and correctness approaches to the expected billions of threads, three general
approaches are seen as possible paths towards exascale debugging and correctness tools: support
for reducing the problem to smaller scales; techniques for full-scale in-situ or online analysis coupled
with a high-level presentation of aggregated data; and automatic error detection and root cause
analysis systems.

Problem Reduction Techniques
The first step for debugging a problem at large scale is for the user to reduce its scale and try

to reproduce the problem with fewer number of nodes. To enable this kind of reduction, debugging
tools must support group operations that allow users to manipulate or advance all processes or
threads in one group in a single operation. The same is also true for graphical user interfaces,
where any information must be reduced so it can be properly displayed. Displays that only list all
processes or threads will no longer be feasible. Similarly, values gathered from multiple processes
and displayed with a tool must be aggregated and displayed using statistical metrics, but also allow
users to closer examine the distribution if it is of interest.

Additionally, tools may be necessary to support such a downscaling, e.g., by increasing the like-
lihood that problems can be reproduced at small scale. This is particularly important for detecting
and fixing non-deterministic problems, such as race conditions, and can include mechanisms to
enforce task interleavings or perturbation layers that introduce noise to randomize execution.

Automatic Analysis Techniques
In many cases such groups of interest may also be detectable using automatic techniques. Those

can include outlier detection, various forms of clustering, and automatic model generation. In all
cases, the analysis attempts to identify behavioral classes in the gathered data and then tries to
either group or classify the data. This can either be used to select individual representatives from
each set or to focus subsequent analysis steps onto a subset of suspicious tasks.

Another technique to reduce data, typically used in performance analysis is sampling, i.e., the
statistical selection of subsets of data. It can help identify larger groups or sets of data and can
also be used to support clustering algorithms. For the detection of outliers or individual faults,
however, sampling must be applied carefully and new techniques may be necessary. Otherwise, it
is easy to miss singleton events or small sets since they may not show up in the sample.

Overall, such data reduction analysis techniques can form the basis for subsequent analysis
steps. An example for this could be the lightweight recording of reduced traces from a subset of
processes. Such traces can then be used for symbolic replay approaches that can recreate the global
system behavior based on a small set of tasks. However, the enable this layering of tools, it will be
paramount to develop interoperable and composable tools and appropriate data formats or APIs
that enable efficient data sharing.

Analysis techniques should be able to do provide the analysis during the initial application run.
Machine time, especially for full scale runs on large scale machines, is typically highly contended
leaving little room for multiple executions at full scale. Further, in case of non-deterministic
problems, it is highly advantageous to be able to monitor the initial run and then not having to
wait for the problem to re-manifest itself.

The analysis should therefore be run in situ with the application or concurrently in an online
mode. This will require new techniques for efficient and light-weight tracking of groups and possibly
a closer integration into the underlying runtime system. This naturally causes additional challenges
both regarding the infrastructure and the amount of perturbation the tool causes. Both, using
additional external processing resources, e.g., in the form of a tree based overlay network, or
supporting the analysis with additional static information collected before the execution could be
viable techniques to mitigate these effects.
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At the same time, though, debugging tools must be able distill and store their online results
for a comprehensive post-mortem analysis. For problems that require a long human analysis time
it is not feasible to block machine allocations. Effectively, tools must separate “think time” from
“machine time” whenever possible. This requires intelligent mechanism to select and extract data
that is most likely required by the user to diagnose the problem post mortem.

Root Cause Detection Techniques
The final goal of debugging tools is to provide a precise identification of where the error is in the

code or the underlying system rather than to report where it occurred. Such root cause analysis
techniques have the potential to provide the largest benefit to the end user. Initial approaches in
this area, e.g., analyzing statistical bug reports exploiting the similarity between tasks, or debugging
coupled with static dependency and control flow analysis, are promising, but have not matured to
the point that they are useful to code developers, yet.

3.1.2 Debugging Hybrid and Heterogeneous Architectures

Exascale system are generally expected to provide some kind of hierarchical programming approach.
Debugging and correctness tools have to follow this trend and provide adequate support. Exascale
heterogeneous architectures that combine Graphics Processing Units (GPUs) and traditional CPUs
within the same compute nodes present numerous challenges with respect to debugging. Neverthe-
less, we expect developers in search of high performance to be more aggressive in using sophisticated
techniques such as dynamic load balancing and asynchronous communication, and we also expect
exascale systems to be more susceptible to component failure than current systems. Thus, the need
for debuggers that will be effective on exascale heterogeneous GPGPU-based systems is extreme.

The challenges of debugging programs running on exascale heterogeneous GPGPU-based sys-
tems involve the greater complexity of their compute node architecture, the larger number of threads
of execution running on each node, and the additional layers of abstraction between the code the
user writes and what actually executes on the node’s compute devices, as compared with the situ-
ation on traditional HPC systems. The node architecture of GPU-based heterogeneous systems is
more complex than that of traditional systems. In particular, the GPUs in current GPGPU-based
systems use a different instruction set architecture than the CPUs, and we expect this characteristic
to be true for many GPGPU-based heterogeneous systems as we move toward exascale.

Because most current approaches for developing GPGPU programs combine the CPU and GPU
code into a single executable file, users will expect to interact with a single tool when debugging
both types of code. Thus, this single tool must be able to monitor and control threads of execution
running on both CPU and GPU, parse both types of executable code, inspect and modify data
held in potentially separate memory hierarchies and register files, and know how to traverse the
execution stacks of those disparate devices — simultaneously.

Furthermore, the number of threads of execution within each compute node is expected to be
much larger than that for traditional HPC systems. System-provided interfaces for monitoring
and controlling threads has been notoriously fragile even with small numbers of threads per node,
and we expect them to be no better as the number of threads per node to monitor is increased
by several orders of magnitude. Yet a debugger is expected to deal with failures of such system-
provided support without propagating such failures to other parts of the system, and without failing
itself.

Also, in the exascale time frame we expect many users to program GPUs using higher-level
abstractions than today’s approaches like CUDA and OpenCL. Debuggers must allow users to
interact with their running code at the level they programmed, but also descend to lower levels if
necessary to understand the nature of a problem.
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Even today, the development tools used to produce GPGPU-based programs do not expose
enough information for the debugger to do this effectively (or the information they expose is in-
correct). Despite these challenges, vendors like Rogue Wave and Allinea have already introduced
products for debugging GPGPU-based programs running on many of today’s important HPC ar-
chitectures. These products are steps in the direction needed for effective exascale debugging, but
they are limited (e.g., they only support CUDA programs). Much more work is needed on formal
models and techniques for efficient debugging on GPU-based heterogeneous exascale systems.

3.1.3 Specialized Memory Systems

Managing and accessing memory efficiently is one of the most crucial challenges for exascale systems.
This is due to several factors: memory per core is expected to shrink as we move to multi- and many-
core systems; the memory subsystem (both statically and dynamically caused by data movements)
will consume a significant amount of the system power budget; and data locality, i.e., reducing data
movement, will be essential for both optimizing performance and power consumption.

These trends are likely to lead to new hardware developments, including but not limited to
the deployment of scratch memory, adaptive cache architectures, and sophisticated prefetching
techniques. Further, future systems will likely provide only limited coherency guarantees with
chances for even cross-chip cache coherency slim to none. Additionally, hardware support for
speculation (for transactional memory or speculative execution) will require multi-variant cache
and memory structures, further complicating future memory systems. Such new features will
either be provided transparently to the user or require manual management in the user’s code. In
both cases, though, we will require new debugging support.

In the case transparency is provided by the system, the debugging interface for the user should
not change in most cases, but debugging tools themselves will have to be able to understand how
a particular execution is mapped to the underlying system. Further, if transparency is achieved
through automatic code transformations before execution, we need additional mechanisms to verify
the correctness of such transformations to guarantee an equivalent execution. In both cases it is
necessary for the underlying system to provide the necessary debugging interfaces exposing how
code is executed on the underlying hardware and software stack.

In the second case, with the user responsible for managing new memory systems features, tools
will have to have the capabilities to expose and present such hardware additions. For example, for
explicitly managed scratchpads, debuggers will have to be able to display scratchpad contents, for
multi-variant caches it will be necessary to explicitly view individual versions, and for non coherent
systems a debugging tool must offer users to examine differences caused by different views on the
same data.

Additionally, since such new and enhanced memory systems are likely to increase code com-
plexity as well as the likelihood of bugs in codes using them. Correctness tools both dynamic (for
dynamic checking of assertions) and static (for the identification of likely problems) will be of great
help to the end user.

3.1.4 Domain Specific Languages

Domain specific languages are one of the promising approaches for programming exascale system.
Their main advantage is that they allow programmers to specify their problem at a higher level.
The system will then translate this information, while exploiting domain specific knowledge, into
the code that will be executed on the machine. While this kind of abstraction is convenient for the
user, it comes with the additional challenge that tools must provide the same view and map its
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data to the same abstraction, in addition to supporting low-level views within the implementation.
This approach leads to two important challenges: debugger and correctness tools will have to

focus on several different audiences and provide the necessary information for both basic users who
rely only on the provided abstractions and advanced users who have a solid understanding of the
system complexities and are willing to break abstractions where necessary to achieve performance.
Each of these groups requires a different view and hence different debugging support. This could
either be achieved through an integrated tool that allows users to switch perspectives or a series of
targeted tools for different user groups. In the latter case, though, tools must be interoperable and
allow for an integrated workflow between all tools.

Second, the principle of domain specific languages is that they are designed and written for a
single domain and hence by definition not useful for general program development. As a conse-
quence, there will be a large number of such languages available to cover all domains. It will not
be possible to create custom tools for each of these languages or adapt an existing tool to work
with all language individually. We will therefore need a common interface across domain specific
languages that allows debuggers as well as other tools to reason about the abstractions provided
by the language and how they are mapped. To provide useful information to high level program-
mers, mapping between levels of abstraction will need to become a first class and extensible feature
of debuggers (and other tools as well). Mapping must support both forward (from programmer
abstraction down to machine detail) and reverse mapping (from hardware details back up to pro-
grammer abstraction). Such mapping information must include both static information gathered
at compile time (e.g., through extended DWARF support) and dynamic information gathered by
the domain language specific runtime.

3.1.5 Mixed Precision Arithmetic

Exascale systems are likely to employ mixed precision arithmetic. Due to the power requirements
of computation, and the bandwidth to move data, it will no longer be possible to conduct all
arithmetic in IEEE double precision. Moving to mixed precision provides great opportunity to
gain performance, but also can introduce subtle errors into programs. Correctness tools to help
programmers develop both mixed precisions algorithms and to test and debug them will be required
if the promise gains from mixed precision are to be achieved. Such tools will likely include both
tools to help check the accuracy of converted code, and also automated tools to assist in identifying
where in a program mixed precisions might be appropriate.

3.1.6 Adaptive Systems

Exascale architectures, systems and applications are expected to be highly adaptive to react to
changing system conditions. This includes adaptivity for fault tolerance, load balancing, power
management, communication optimization and data locality. If this adaptivity is fully hidden from
the user by the system, the existence of such adaptivity should only play a minor role for functional
debugging. As above, any debugging or correctness tool will have to be aware of the adaptivity
and provide the same level of transparency. Depending on how the adaptivity in the system is
implemented this additional requirement could range from no necessary change to a significant
monitoring of any adaptive decision.

However, if any of the adaptivity is exposed to the user, debugging tools need to be aware of
any adaptivity in the system and present it to the user in a way that is easy to understand and
can be combined with the rest of the debugging information. This will require the tools to monitor
any adaptive component in the system and to correlate the changing system information with
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the debugging information gathered during the application’s execution. To enable such debugging
approaches, any adaptive component will have to expose its decisions to the rest of the system
through a set of APIs.

An additional property of adaptive systems is that they lead to non-deterministic executions
since decisions are made a runtime and change from run to run or even on a per timestep basis.
This can lead to new and previously unobserved behavior during each application and can lead to
the exposure of latent bugs in the application or the system stack. Further, left uncoordinated,
multiple adaptive system components might make conflicting decisions possible leading to worse
performance or, in the extreme case, deadlocks or incorrect executions. This is yet another case for
which users need to be prepared and will require tools that help distinguish what happened and
how to fix it.

3.1.7 Correctness Tools

The development of software for future architectures is expected to be more complex. A signif-
icant amount of complexity will be put on the application developer to write software correctly.
Correctness tools have an opportunity to improve the productivity and make the development of
future software more tractable to build. The development of HPC software using just a compiler
and editor may be relegated to history; the expected complexity of writing future HPC software
may require a range of specific correctness tools to provide portability and performance.

Tools for correctness can range from tools for finding bugs (logical or performance bugs) to
tools that validate numerous properties via proof techniques. The goal of correctness tools is to
identify problems in the code as part of its development and guide the application development
around such problems. Tools may be specific to individual source code languages, operate on the
binary executable, or both.

Infrastructures to support building correctness tools can significantly simplify and make it
tractable and economical to build new classes of tools. Compiler and/or binary analysis support
and infrastructure may be integral parts of the development of new classes of tools.

Static Analysis Tool Research
Static analysis has long been a basis for the analysis of software for security and identification

of numerous bugs and portability issues. Such work often requires either source code or binary
executable analysis infrastructure; but static analysis has limitations, usually with regard to impre-
cision in context sensitive analysis and/or pointer aliasing (which is technically undecidable). The
analysis of large scale codes is further complicated because analysis can be non-linear in both time
and space. However, modern machines have grown significantly large in memory and performance
and previously unreasonable approaches are today quite tractable. The HPC specific requirements
for static analysis tools further narrow the types of problems that should be identified for DOE
applications. As a result, static analysis based tools may be of significant use in the development
of HPC code. As examples, static analysis tools might be tailored to:

• detect locality and parallelism, and guide the user in exploiting it,

• enforce programming model usage rules (tailored to each programming model),

• detect correct use of synchronization,

• identify memory access patterns,

• support automated extraction of performance models, or

ASCR Tools Challenges for Exascale Computing 25



D
RA
FT

• provide data for dynamic analyses.

Model checking is a type of support that has been popular partly because where it detects a
problem it provides an example of how it was derived. Such tools that automatically emit counter
examples to rules that are enforced can be extremely useful to support application development
because they communicate narrowly and well defined problems and have impact greater than a list
of issues that could be mostly false positives. Model checking tools narrowed to address the require-
ments of specific HPC issues could be especially useful in supporting HPC software development,
e.g., for MPI and other specific programming model implementations.

Dynamic Analysis Tool Research
Dynamic analysis tools address some of the problems of static analysis tools, but add new

problems such as dependence on inputs and performance penalties. However, dynamic analysis
can be the only way to know some specific and required information to make an analysis more
precise. As an example, dynamic analysis is able to see and support analysis of the data layout in
the heap, which is generally at the limits or beyond the capabilities of static analysis (e.g. static
shape analysis). Dynamic analysis can be used with instrumentation infrastructures at either the
source code or binary executable level; each with some specific advantages and disadvantages over
the other. Dynamic correctness tools can further exploit debugging or profiling interfaces within
the system stack, where available, to enable a precise and lightweight instrumentation.

Dynamic tools have been successfully applied to checking the correct usage of APIs. In particular
for MPI several tools exist that detect incorrect usage of the MPI API as defined by the MPI
standard and report such behavior to the user. Similar approaches could also be used for other
APIs, such as CUDA, the OpenMP runtime, or even higher-level math and numeric libraries.

Mixed Static and Dynamic Analysis Tool Research
This approach to building tools provides the best of both static and dynamic analysis, but

often is not done because its requires expertise that spans disciplines that frequently don’t interact.
Research groups doing both static and dynamic analysis are a bit more rare, thus such tools are
less common. Mixing these forms of analysis together permits dynamic analysis to be used more
efficiently (optimized) via static analysis, e.g., by augmenting dynamic analysis or specializing
dynamic tools to particular applications. This can ultimately lead to automatically generated
application specific tools. Conversely, static analysis can benefit from runtime information that
can make it more precise, at the risk of only being a bit more specific to the program inputs.

3.2 Cross-cutting Issues

Besides the debugging and correctness tool specific issues discussed above, we also have to face a
range of cross-cutting issues, with respect to both external constraints and challenges on debugging
and enabling technologies.

3.2.1 Dealing with Faults and Fault Tolerance

The rising complexity and size of future machines will have a dramatic impact on the probability
of faults. Further, the need for power reduction may force chip developers to produce less reliable
architectures, forcing some of the fault handling to software. All of these trends lead to fault
tolerance and resiliency being one the key design challenges for exascale systems.

This has several severe implications on tool developments in general and in the area of correct-
ness and debugging in particular: a) tools need to be resilient themselves; b) tools must coordinate
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with our layers to be informed about faults; and c) we need a new class of correctness tools that
helps ensure the correct execution of code, even on faulty hardware.

First, tools must tools be resilient themselves to continue working even after an application has
suffered a failure. In particular for debugging tools, the tool must survive crashes and help the user
determine whether a system or an application problem caused the application to fault.

At the same time, if part of the system fails, but the application can recover and continue, the
tool infrastructure must detect this and adjust itself. For example, after a checkpoint/restart, tools
must track the newly created code, carry over any state collected before the failure and continue
running. This particularly important for long running and interactive tools, such as interactive
debuggers.

Overall, this puts high requirements on the collection infrastructure as well as the graphical
user interface. Changes in the system, such as migrated tasks must be reported to the user, any
state tracking must be adjusted, as well as displays updated.

For the third point, the need for a new class of correctness tools, we need to distinguish different
fault types. For soft and transient errors, such as memory corruptions, tools could provide help
in early detection mechanisms for memory locations, or could be preventative by using replicated
execution strategies. If application programmers are involved in writing fault detection or recovery
mechanisms, then tools to support this will be required. Such tools might include programmable
fault injection systems to make rare events happen on demand. Other fault types like start/stop
scenarios, require a different handling and will most likely build on infrastructure that enables a
dynamic view on the application’s execution and can tolerate a varying number of nodes.

3.2.2 Dealing with Power Constraints

Debuggers, like any other tool, will require their own resources, in particular when run at scale. This
can include extra threads on compute nodes, additional dedicated processing nodes, or increased
I/O pressure caused by extensive logging. In all cases this will also have an impact on the overall
power consumption of the system.

If the system is running at power capacity limit or is managed by an adaptive runtime system
that continuously tunes an application to be on the limit, we cannot deploy tools without changes
to the system. This can be as simple as reducing the speed of the application or instructing the
runtime system through a steering API to leave room for the additional demands of the tool. This
will perturb the application and debugging tools have to take the resulting skew into account.

3.2.3 Shared Infrastructures

Designing and developing scalable solutions for debugging and correctness tools requires a significant
amount of engineering work as well as novel research and solutions in the underlying data transport,
analysis and storage infrastructure. We can no longer afford to redevelop this underlying work over
and over again for each tool.

The needs for debugging and correctness tools with respect to the necessary infrastructure
will be quite similar to those of performance tools. Further, there is a large overlap with other
components of the system software stack, including the I/O system and the data analysis and
visualization pipelines. We will explore these infrastructure aspects in more detail in Section 4.

3.2.4 Co-Design Needs and Opportunities

Debugging and correctness tools rely on information from virtually any other part of the system
stack. They therefore require the necessary APIs, especially in newly developed components of the
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exascale ecosystem, ranging from establishing new APIs to enable tools to communicate with the
system and runtime stack to debug information in domain specific languages. Further, debugging
tools could make use of additional tracing and monitoring capabilities in the base architecture.
For example, hardware mechanism to trace memory accesses could help the design thread check-
ing tools, new hardware counters in particular in the memory and network subsystem allow new
measurements, and hardware supported memory watch points can enable fast state tracking for
interactive debuggers. An additional feature that is helpful for debugging tools (and beyond) is a
global time stamp that enables a clean correlation of events across nodes, processes and threads.
The latter is especially useful for debugging adaptive systems where a temporal correlation of
changes in the system is essential.

3.3 State of the Art

The state of the art in debugging and correctness tools consists of a variety of tools supplied by
hardware vendors, independent software vendors (ISVs), and University/Laboratory groups. Each
of these sources contributes to the overall HPC tool ecosystem. In addition, users still find manually
debugging with print statements to be useful. However, given the number of threads expected at
exascale, even getting a few bytes of output from each thread via a print statement will likely not
work.

Most of the hardware vendors supply tools with their systems. Both Cray and IBM supply
tools designed to work on their integrated HPC platforms. The Cray tool suite is more focused on
performance tools (such as CrayPat), but for debugging they rely on ISV supplied debuggers. The
IBM tools consists of primary of pdbx, which is a basic parallel debugger designed for their shared
memory HPC systems as well as ISV supplied debuggers.

Two major debugging tools are currently available from ISVs. DDT (from Allinea Software)
provides traditional breakpoint based debugging for parallel computing. To help manage complexly,
it includes a process group viewer. It also includes a parallel stack view that shows a merged view of
all of the stacks of the current threads. Totalview (from Rogue Wave Software) provides traditional
breakpoint debugging, but like DDT includes commands to manage groups of processes. Totalview
also includes an array examination capability to allow users to look at slices of their arrays both
as tables and graphically. Both DDT and Totalview now include some capability to debug CUDA
code. However, both systems assume that code is written directly in CUDA, and seem to lack tools
support for code compiled into CUDA. There is also an effort to create an Eclipse-based parallel
debugger plug-in called PTP.

At the DOE laboratories and universities a number of innovative debugging and correctness
tools have been developed. These tools vary in maturity from proof of concept research ideas
to stable tools used in production environments. The Stack Trace Analysis Tool (STAT) [20],
developed jointly by LLNL and the University of Wisconsin, provides a lightweight tool to identify
and cluster stack traces from a large number of nodes. Another example of correctness tools are
memory utilization tools. An early lab tool for this topic is MUTT from LANL.

Another rich area of correctness tool research has been race detectors. A number of tools have
been built using either the lock-set [35] or all-sets [9] algorithms. Both of these approaches work
well for small scale cache coherent shared memory, but can be subject to large runtime overheads.
Recent work [17] has looked at using exisitng hardware to try to accelerate race detection. Also
recnetly, new approaches to make classic vector clocks faster have been developed [14]. Despite these
advance, run-time overhead is still so high that many programmers either will not use such tools or
are discouraged by the perturbation caused by these tools. In addition, the problem is exacerbated
by the increasing core count on processes; handling more threads compounds the overhead.
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4 Cross-cutting and Tool Infrastructure Issues

From the challenges laid out in the sections above it has become clear that stove pipe solutions,
as they are currently common, are no longer feasible and will not enable us to provide applica-
tion developers with the capabilities they need on exascale systems. In particular, the following
crosscutting aspects need to be considered:

• We are facing challenges, with respect to changing programming and execution models, com-
plex architectures and applications, and extreme scalability requirements in all parts of the
system layer, that cannot be solved by a single tool. Instead, we need a set of interoperable
and compatible tools — static and dynamic — that can help users tackle individual problems
as they arise.

• This required flexibility can only be achieved by componentizing tools and making each
component available as part of a tool set through a set of compatible APIs. This has the
advantage that each component can be developed, optimized, and maintained separately
reducing duplicated effort. Further it provides the ability to quickly prototype new tools for
newly arising challenges.

• Looking at the broader picture, the development of effective tools will require a close collabo-
ration and interaction with the entire system stack. In fact, to fulfill many of the requirements
posed by the user community, tools need access to more in depth information across all system
layers than is currently available

• Tools need to be available early in the development process of both applications and the sys-
tem software stack, especially in the context of successful co-design, since they will not only be
used to fine tune an almost completed application, but rather must be available to accompany
the full development process, in particular on new hardware or software architectures.

It will be important to clearly define these cross cutting issues and API requirements as well
as responsibilities for their implementation. Further, these APIs need to be system independent to
allow for portability of tools across a wide range of architectures.

4.1 Crosscutting Demands on Tools and Tool Infrastructures

Exascale computing presents at least two particular sets of cross cutting challenges for the tools
community that are driven by the requirement to deliver an exaflop of computation in 20 Megawatts
or less [2]. An “evolutionary” path towards exascale that embraces a traditional execution model
will be forced in the direction of supporting billions of extremely light-weight, power efficient cores
with extremely limited per core memory and bandwidth and strict requirements on data locality.
This “evolutionary” path places unprecedented scaling requirements on existing tools and drives
the need for new tools to address fine grained analysis of energy consumption and data movement
through the memory hierarchy.

However, a “revolutionary” path toward exascale, in which old paradigms are discarded in favor
of possibly radical new approaches to the manner in which applications interface with hardware,
may drive the tools community in an entirely different direction in support of new algorithms
and methods. Possible outcomes of the “revolutionary” path may involve the development of new
modes of processing in which data is static and operations are dynamic, frequent errors are not only
acceptable but expected and correctness is no longer based on strict determinism or reproducibility.

ASCR Tools Challenges for Exascale Computing 29



D
RA
FT

How does one perform correctness checking or even debug, for that matter, a code that only needs
to be “good enough”?

As a consequence, the tools community depends heavily on the architecture, programming
models and systems software communities to accurately and thoroughly specify the execution model
that will become the exascale ecosystem for the tools community. In addition to the execution
model, which defines the “sorts of actions” that an application will and will not be able to perform
on a given architecture, the API’s that specify communications across the system stack are critically
important to the tools community. What sensors, monitors, counters and controls will be available
to tools in the exascale timeframe? This information is critical to delivering successful tools for
exascale.

4.2 Connection of HPC to How Embedded Software is Developed

The embedded software community has a long history of using tools to support their software
requirements. They have been forced to deal with the constraints of low power for a long time and
in this way their history may foretell how HPC software might be developed in the future. The next
generation of hardware for HPC may share significant features with embedded processors if both
are driven to use similar processors with similar demands on power efficiency. In the embedded
software community there has been a significant reliance on deep tool chains to support software
development and the same should be considered for HPC software development. The popularity
of tools has been driven by both productivity and software complexity, the same issues may drive
HPC software.

The extent to which the exascale tools community will have the opportunity to leverage tools
available to the embedded community depends largely on the proposed system architecture and
execution model. Software development tools in the embedded community fall largely into two
classes: (1) design tools for architecting a system and (2) development tools for programming
the system. Traditionally, and important difference between embedded architectures and DOE
architectures for scientific computing has been the focus of flexibility. Embedded computing offers a
high degree of flexibility in designing the system from the circuit level up, and the tool chain reflects
that. Scientific computing, on the other hand, has tended to embrace commercial components for
both system hardware and software. On the flip side, embedded computing frequently targets
a very limited range of applications for a particular architecture, possible even one. By way of
contrast, scientific computing focuses its diversity at the application end, and once again the tools
must reflect that diversity.

To first order, the extent to which tools developed by the embedded community can benefit the
exascale design and development efforts will be a function of the degree to which exascale chooses
to pursue architectural diversity and algorithmic specialization. In that case, an “evolutionary”
approach to exascale that emphasizes extrapolation of traditional architectures and execution mod-
els will find less overlap with embedded computing in terms of tools. However, a “revolutionary”
approach to exascale could in fact create the opportunity to exploit a wide range of commercial
tools develops specifically for the purpose of designing reliable, highly energy efficient HPC systems.
It is also possible that the same or even similar tools will not be used for both exascale and the
embedded system communities, but that the HPC application development process will only be
similarly dependent upon a different set of tools and require a similarly rich software development
tool infrastructure.
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4.3 Tool Interfaces, Abstractions, and API Issues

The development of tools supporting development and evaluation of large scale applications on
future platforms requires some practical considerations. Specifically, we will need to address as
a community: tool interfaces, connections to programming model abstractions, and general API
issues.

4.3.1 Interfaces with Programming Models and Hardware

It is essential that tools allow the users to relate any information that is being gathered back to
the application, its source code, and its data structures. This will only be possible if tools gain
access to abstractions provided by the respective programming models. A lower level access to the
programming model abstractions would be welcome as a way to connect and define tool interfaces.
Current approaches only provide such information in a very limited way making it hard for tools
to interpret the performance data and measure features being abstracted. We therefore need new
APIs that can allow both the compilers and runtime libraries for programming models to deliver
this information to tools.

Performance counters are the most common access to metrics at the hardware level, this limited
level of insight into performance is not enough. To understand the performance implications we
will require the evaluation of new metrics (e.g., for network traffic, for energy consumption, or for
accelerators) and other introspection capabilities (such as memory reference tracing or external
environment control). These capabilities must be accessible to tools through standardized cross
platform API. Specifically, it must be possible to use performance counters safely in both caliper
and sampling based tools.

4.3.2 Interfaces with OS, Runtime, and System Software

The requirements for good quality APIs extends to the OS level, runtime systems, and other sys-
tem software. Support requirements include: debug interfaces, symbol tables, thread allocation,
programming model and runtime system behavior, feedback and notification mechanisms in case of
adaptivity in the system stack, and scheduling data as well as resource utilization. Even specialized
node kernels (reduced functionality OS support on the nodes) have specialized requirements to sup-
port debugging for example. These requirements may exceed the more common API requirements
of the applications. Programming models and Domain Specific Languages (DSL) will present ab-
stractions and runtime systems to support them and these need to be exposed through low level
API in order to support tools.

Further, many of the features discussed above, in particular the offload capabilities for asyn-
chronous processing of performance data, require additional resources. Tools need interfaces to
allocate and control these resources that are provided by the system software in a scalable manner.
For example, tools need to be able to locate process and thread information, launch tool daemons
on suitable nodes and request additional processing nodes for online analysis and data aggregation.

Dynamic tools, where tool analysis results will be used for run-time optimization, must be able
to feed results and response options to the OS and system software. For instance, if a dynamic
analysis leads to a discovery of application imbalance, such information must be able to used to
initiate a coordinated response by system resource managers, applications, and system response
capabilities such as process migration.

Finally, tools share infrastructure requirements similar to the data analysis, visualization, and
I/O software stacks. Like tools for performance monitoring or correctness checking, data analysis
tools will increasingly need to rely on in-situ or concurrent processing on an external set of nodes
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to avoid streaming unwieldy amounts of data to storage. Common infrastructure for tools, data
analysis, visualization, and I/O should be explored.

4.4 Requirements on Tools Infrastructures

In addition to new capabilities that tools need to offer to the user community, future computing
systems also pose significant challenges to building and maintaining the tools. Tool infrastructures
make it easier to build tools that would otherwise be intractable to support; and yet have a wide
range requirements to make them suitable to tool developers.

4.4.1 Scalability

Tools themselves have to be scalable and must be able to operate efficiently across the entire
machine. Each tool component must be scalable by itself and should not contain algorithms or
data structures that scale linearly (or worse) with the number of processors. The tools themselves
must use the parallel resources available in the system for their own processing. Debugging systems
have special demands that are discussed in 3.1.1; these include efficient use of parallel resources.
In contrast, correctness tools have different demands depending on whether they address static
or dynamic analysis; or both. Frequently for static analysis performance and levels of correctness
(fidelity) is associated with the size of the code or critical sections. Where as for dynamic analysis,
scalability may be more closely associated with the amount of instrumentation and how it competes
for resources (e.g., for memory usage). The scalability of tools will be increasingly important on
future computing platforms (e.g., exascale).

4.4.2 Processor Architecture Heterogeneity

Processor architecture heterogeneity is expected to be more common in defining future processors
where applications will be executed and where tools will have to run. Such system exist today
and there is even initial experience with this type of increased complexity. Heterogeneity raises the
complexity of both tools and tool infrastructures. Heterogeneity can have several faces. Examples
are combinations of GPUs with CPUs or many-core CPUs containing both fat cores (fewer more
powerful and less efficient cores) and thin cores (more numerous, low power, and more efficient
cores). Future architectures many span a wide range within how they mix heterogeneous elements,
thus further raising the complexity of tools. Performance tools have specific requirements, discussed
in 1.2. For static analysis, tools have to understand GPU languages (e.g., CUDA and/or OpenCL)
or some level of intermediate representation of the code (e.g., LLVM or PTX). For dynamic tools,
there are additional levels of complexity associated with APIs that will provide information to
support such tool chains.

4.4.3 Relevance of Power

Future computing systems will be more dependent on power optimizations, as discussed in 1.2.
Power cross-cuts many aspects of tool research from optimization of applications, to communicating
relevant metrics within performance analysis. In this way future platforms (exascale and beyond)
will dramatically reshape how we do analysis (for performance and power) to optimize applications,
what tools are most relevant to application groups, how the tools are designed to use architecture
specific features, and how trade-offs are handled between performance in time and power. Power
is of course cross-cutting to subjects far outside of the domain of this report, for example to the
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mathematical algorithms that would be used and alternative communication latency tolerant forms
of new and old algorithms.

4.4.4 Memory Constraints

Exascale platforms will be severely limited in the amount of memory they provide per core. Appli-
cations are likely to exploit the available memory to the fullest extent leaving only very little room
for tools running alongside these applications. Therefore, tools have to be written with even more
care regarding the memory they consume. Data structures that are linear (or worse) with respect
to the number of cores are likely to severely limit the applicability of the corresponding tool.

4.4.5 Addressing the Languages and Instruction Sets Used within DOE

Where tools interact with source code or binaries, they must support the languages common to
applications in DOE or, in the case of binary tools, operate on the instruction sets that are a part
of DOE computing platforms. Tools have to operate on a wide range of platforms and across a
wide range of applications to support HPC within DOE.

4.4.6 Fault Tolerance

Exascale tools will be required to integrate seamlessly into the fault-tolerance infrastructure of an
exascale system, which could require a great deal of cross-layer coordination between application
fault-tolerance interfaces and the remainder of the software stack as discussed previously in Sec-
tions 2.1 and 3.2.1. Particular consideration should be given to libraries provided by third parties
or vendors that may or may not support fault-tolerant execution. In addition, correctness tools,
performance tools and particularly debuggers will require some level of hardening to accurately
collect and parse data generated by potentially faulty components or interfaces. Debuggers ought
to be able to recognize and trap errors that generate failures and invalid data, but not mask them
from the user. The scope of possible failure modes at exascale if far too broad for the tools commu-
nity to address them comprehensively, so they will depend upon on the systems and applications
communities to articulate a prioritized taxonomy (e.g., soft errors, permanent faults, or silent data
corruption).

In some cases, users that implement a resilience strategy that attempts not merely to detect
and contain faults, but to run through faults, may need tools to support robust debugging of
resilient software. Research should explore the possibility of using debuggers to inject faults to test
error handling and other resilience features of an application. Correctness tools are another area
where research on fault-tolerance may bear fruit. Providing the static analysis tools to determine
whether or not a code will “do the right thing” under certain fault scenarios may be of particular
value for exascale. Tools and metrics that aid in evaluating the tradeoffs of power, performance
and reliability are also of interest in the exascale timeframe. An integration of correctness tools,
performance tools and power profiling might be useful in giving the user a better sense of the risks
and tradeoffs in creating fault-tolerant algorithms.

4.4.7 Componentization: Tools and Tool Infrastructures

We will need sophisticated tools to address the complexities of the target applications and systems.
No single tool will be able solve all problems - instead we will need the ability to create and maintain
custom tools for particular problems or target platforms. Individual groups will bring specific
expertise to the problems of developing tools for future platforms. The depth of the problems to
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solve will best be supported by building on each others tools and infrastructures, and by defining
a community to support the development of research tools and research tool infrastructure. Such
approaches to support tools using componentization can be especially effective in permitting new
tools to be assembled quickly.

Such component tool infrastructures for tools will not only avoid stovepipe solutions and enable
interoperability between tools, but it will also enable quick tool prototyping and the creation of
custom or even application specific tools. This will allow tool providers to quickly react to new,
unpredictable problems and provide users with quick and direct support without having to create
specialized tools from scratch.

Tool consumers can either be humans, other tool components, or other parts of the tool chain or
the system software stack. In case data is delivered to the end user, any data needs to be attributed
to code and data structures and presented in an intuitive manner mapped to the domains the user
is most familiar with and that allow for an easy evaluation. This requires both new display and
visualization techniques capable of displaying data gathered at scale and new analysis techniques
that are capable of extracting all relevant information and features.

4.4.8 Flexible and Effective Instrumentation

Gathering data from a running program is a key technology for debuggers, performance profilers,
testing tools, tracing tools, and many others. Flexible and effective instrumentation tools are
needed for programs, both at the source and binary code levels. At the source level, such tools
need to be incorporated into source-to-source translations systems. At the binary level, tools need
to support both static instrumentation (binary rewriting) and dynamic instrumentation. Static
instrumentation is crucial on leadership class systems where control of a process at runtime is too
complex or expensive to use. Dynamic instrumentation is crucial in cases were adaptive techniques
are needed, either to respond to runtime conditions or for efficiency reasons.

Ideally, such instrumentation tools would work in concert, allowing the simultaneous use of
source code instrumentation, static and dynamic binary instrumentation, couple with runtime
sampling. While pieces of this functionality have long been studied, such a comprehensive facility
is still to be developed.
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5 Path Forward

5.1 Summary of Support for the Evolutionary Path

An evolutionary path to exascale will focus on scaling of traditional programming models towards a
goal of 1000x the Flops performance of current petascale systems. However, to meet the 20 MWatt
power goal for exascale, computations will be performed by computer cores that are simpler and
slower than those found on current machines, which means that the total number of concurrent
threads of operation will grow much more than 1000x in the exascale timeframe. Thus, billion
thread parallelism is likely, and extreme data locality will be required to minimize the joule per bit
costs of moving data over wires between memory and CPU.

The high level implications for these changes are that debuggers need to scale to well over 1000x
in parallelism and performance. In addition, correctness and memory tools will be needed that can
provide developers with increased insight into optimizing fine grain parallelism and data locality in
their codes. Techniques for performing analytics on data gathered by the tools should be explored,
as the tools will be generating far more information that is manageable by a human. Research needs
to look for new approaches to identify performance bottlenecks, suggest code transformations to
improve data locality and synthesize debugging information to isolate bugs in codes running on a
billion threads.

5.2 Summary of Support for the Revolutionary Path

The revolutionary path to exascale involves adopting new execution models for exascale, that will
in turn drive revolutionary architectures and programming models. The impact on tools would be
a paradigm shift on what kind of data is available to the tools, and what kind of information is
expected by the developer. For instance, one might imagine programming in an environment where
there are more threads of execution than pages of memory, in which case one might want to debug
from the perspective of the memory unit as the fixed reference point with millions or billions of
threads moving in and out of it and modifying its state. Basic research is needed to understand
what kind of tools are needed to support such a model of programming, and what kind of tools
can help provide “backwards compatibility” of legacy codes within the context of the new model
of execution.

Other concerns on the revolutionary path could include tools that allow users to optimize for
power or even reliability, as opposed to performance, and analytics tools that perform discovery on
the dynamic data collected from the running application. The amount of performance and debug
data being generated on an exascale system will in itself be exascale, which means that research
is needed to determine what data to collect and how it will be used in diagnosing performance,
reliability, power and correctness issues on the system. Further, research will be required to define
techniques and interfaces for gathering and communicating information across layers of the system
stack in the new execution model, which may not be process based as our traditional models have
been.

5.3 A Sustainable Robust Infrastructure for HPC Tools

Clearly, application users require robust tools to support their research work. The tools themselves
must be significantly more robust than the applications where they are being used. This requires
significant attention to the software development of tools, their testing, evaluation on different
platforms, and open-source release into the DOE community. The road to production-ready tools
is long and frequently not supported wholly by research funding. This will be an ongoing difficulty
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for research groups attempting to release production-ready software components for the tool com-
munity to build upon, and the application groups to use such tools to support HPC application
development. It will become more complex as the architectures become more complex; and maybe
especially difficult for future exascale platforms. DOE may need to consider creating an organiza-
tion separate from research that is chartered with transitioning tools and tool infrastructure from
research to production and maintaining then long term.

In order to provide production-ready software for both application developers and for the tool
development across an increasingly diverse set of architectures, we emphasize the need for a sus-
tainable, robust infrastructure for HPC Tools, which includes the following:

Interoperable APIs to enable componentization. Interoperable APIs for tools provide nu-
merous benefits, including promoting reuse, portability, easier maintenance, composability,
and modularity. The research community should strive to outline, prioritize, and implement
components and pertinent APIs for the necessary exascale tool functionality.

Modular, reuseable components for scalable tool infrastructure. Modular tool compo-
nents that allow the development and composition of a set of tool functionality necessary for
solving specific performance analysis or debugging tasks. This infrastructure should provide
components using a variety of mechanisms that include libraries, runtime systems, software
source code, user interfaces, and standard APIs.

Integration of tools with the target hardware and software ecosystem. Successful soft-
ware tools require intimate knowledge of the target architecture and software system. Vendors
must provide this knowledge to external developers in some form, either by adhering to stan-
dards or by providing specifications, documentation, software, and early access to systems.
Furthermore, future systems are unknown at this time, and most importantly, the underlying
system architectures could be quite diverse. In many cases, existing tools must be ported
and validated against these new systems. This task is made much more difficult if the new
systems use novel architectural features, or non-compliant or proprietary software.

Access to large scale platforms to test and evaluate tools. Access to system testbeds for
software development and testing continues to be a challenge for development of software
tools. In particular, software development tools must be able to run at production scale and
in the same environments as production users. In some cases, these developers must be able
to modify the system software, such as the operating system, to perform their tests.

Focus on software engineering. In order to bring software tools to broader audiences their
usability must extend beyond the tool authors or similar tool experts with intimate knowledge
of the software. Attention to software design, robust deployment, documentation, and user
support will allow tools to extend their impact from being simple research prototypes to
resources that enjoy wide usage by science teams. In order to move in that direction attention
to software engineering as exemplified by private sector software creators would be beneficial.

Build systems to support portability of tools. Hardware and software systems that address
portability will allow tools to leverage through re-use the investments already made in tool de-
sign. Hardware systems that adopt open standards to expose important performance and cor-
rectness data will see more rapid implementation of tools than in cases where such interfaces
are hidden or accessible only to the hardware vendors. Likewise software efforts that build
platform independent APIs for accessing such data, such as the Performance API (PAPI),
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make tool development significantly easier and promote interoperability of tools through com-
mon points of reference. Lastly, portable tools have a substantial advantage since users are
able to find familiar tools and methods between machines as opposed to climbing a new
learning curve for each new architecture.

Transitioning research prototypes to production tools. Many of today’s successful research
tools could benefit from sustained funding to transition the tools to production software.
The pathway from research prototype to a software tool that is widely available, production
quality and actively supported is not clear. In most cases, the funding researchers receive is
targeted toward specific research goals, and not necessarily to provide tool porting, testing,
documentation, standardization, or user support. In addition, tools may have to be integrated
into the larger software stack as provided by the vendor or facility. This integration takes
planning and effort.

Supported infrastructure for tool maintenance and hardening. Similarly, academic and
laboratory performance tools researchers and developers rarely possess either the skills or
the desire to transition research ideas to production code, with concomitant support. How-
ever, the government rarely funds long-term maintenance and tools support. A new model of
software tool support is needed if we are to address current and future needs.

5.4 Fault Tolerance and Reliability in Tools

The systems and applications communities must articulate a prioritized taxonomy of failure modes
in order for tools to be prepared to address them. Then a cross-layer collaboration will be needed
to define data and interfaces that must be gathered and communicated in order to make the tools
themselves resilient, and provide feedback to users and developers on the fault-tolerant performance
of their applications. The same requirements will hold with regards to power concerns, as the tools
community will need to work closely with the entire system stack to correctly identify what needs
to be monitored and how it should be measured.

Success will rely upon a strategy of “layered interoperability” based upon a shared tools infras-
tructure. The impact of changes to the tool infrastructure on the ability to do science must be
carefully monitored through close collaborations with the developer and user communities. This
collaboration will be crucial to make certain that available tool resources are focused on solving
the right problems in the exascale timeframe.

5.5 Intellectual Property

IP is a major challenge for software design and interoperability, and it is not simply confined to
HPC. Two approaches can help mitigate collaborative issues stemming from IP issues.

First, aside from standardization of interfaces to target system architecture and system software
components, developers of software tools could benefit from standardization on specific infrastruc-
ture components within their own community. For example, APIs, tracefile formats, and user
interfaces could all benefit from standardization. This standardization would promote tool inter-
operability among other benefits.

Second, open-source software gives the labs the opportunity to fix bugs and add features through
internal efforts and external contracts. Communities can develop around open-source software re-
sulting in cost sharing; however, we must recognize that the community of leadership class facilities
is, by definition, small. Also, we must find ways to ensure open-source research projects evolve into
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robust, easy to use, well-documented software. Whether we chose open-source software or propri-
etary software, the community must be engaged in software development tools and their underlying
infrastructure.

5.6 Application Engagement

All too often, performance tools are developed in the absence of detailed understanding of user and
application challenges. Conversely, users are often unaware of the technical difficulties underlying
tool design and support. Bridging this gap with a collaborative tool development and extension
process, where promising ideas are identified and tested early, then enhanced and supported across
the application development and support cycle, would ameliorate the expectations gap. Recent
experiences in both the Office of Science and NNSA affirm the distinct advantages of having com-
puter science experts engaged with applications and domain experts. Working together, these two
groups can best map the applications to the architectures.

A supporting path forward is to examine factors that impede the use of tools in the application
and user communities. Reporting from the annual NERSC user survey and from wide-spread
discussion in the HPC community makes clear that ease-of-use is key to the adoption of tools by
users. A successful program for exascale tool use must especially focus on readily deployable turn-
key tools as the complexity of likely exascale HPC architectures will bring risks that an already
difficult to use environement makes tools harder to use.

5.6.1 Education and Outreach

Another necessary step in the exascale tools path forward is a means to develop two-way commu-
nication between providers about what is available and input from users regarding what works and
what does not. Continued tutorials and trainings programs at venues where application scientists
gather should prove a valuable asset as we move toward exascale.

Outreach also serve to broaden the scope of what we consider to be the HPC exascale community.
Sharing performance and correctness tool expertise with the private sector and finding application of
these tools in new venues outside DOE computing centers serves multiple goals. Firstly it increases
the impact of these tools. Secondly it serves to extend the longevity of tools software as the number
of stakeholders in adopted tools increases. An example of the latter are the performance tools that
now come as part of a standard Linux distribution (valgrind, pin, perf events, etc.) that were once
the province of a much smaller community.

5.7 Strategies for Validation and Metrics

Power and reliability are becoming first class concerns in the exascale timeframe and are creat-
ing unique challenges for tool validation. In order to validate, one must be able to measure. In
order to measure, one needs a metric. Currently, there are no universally agreed upon metrics
or “benchmarks” for reliability. There is some consensus in the community that “time to a cor-
rect solution” and “joules to correct solution” are valuable metrics, but these metrics are highly
application dependent.

A good place for the community to begin would be to agree upon a handful of metrics for
power and reliability, define a benchmark suite of applications to be measured and implement
methodologies for measurement. With this as a foundation, tools will of necessity be validated
based on their ability to accurately measure power and reliability metrics on benchmark codes
as compared to implemented measurement methodologies. For power, work has already been
done by the vendors which could form the basis of a test suite for tool validation (e.g., the HP
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Intelligent Power Discovery Infrastructure or energy management through the Dell OpenManage
suite), however, in the case of reliability there is much foundational work to be done to define what
is to be measured and how to measure it.
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