Lessons from the past, challenges ahead, and a path forward

John Mellor-Crummey
Department of Computer Science
Rice University
On Programming Models for the Exascale ...

• Problem: rise of complexity of exascale systems
• Idea: provide a high level of abstraction
 — handle mapping onto heterogeneous nodes
 – fat multicore + thin manycore
 — handle details of data movement and synchronization
 — handle details of computation partitioning
A Decade Ago: High Performance Fortran

Partitioning of data drives partitioning of computation, communication, and synchronization

Fortran program + data partitioning
Partition computation
Insert communication
Manage storage

Same answers as sequential program

HPF Program
Compilation
Parallel Machine
Rice dHPF Compiler, circa 2000

- Sophisticated data partitionings
 - skewed cyclic tilings using symbolically-parameterized tiles of uneven size with many-one mappings of tiles to processors

- Sophisticated computation partitionings
 - e.g. partially-replicated computation to reduce communication

- Program analysis
 - polyhedral analysis of iteration spaces, communication

- Communication optimization
 - communication normalization, coalescing
 - latency hiding

- Node performance
 - generate clean inner loops
 - cache optimization (padding, communication buffer mgmt)
Productive Parallel 1D FFT (n = 2^k)

```fortran
subroutine fft(c, n)
    implicit complex(c)
    dimension c(0:n-1), irev(0:n-1)
!HPF$ processors p(number_of_processors())
!HPF$ template t(0:n-1)
!HPF$ align c(i) with t(i)
!HPF$ align irev(i) with t(i)
!HPF$ distribute t(block) onto p
    two_pi = 2.0d0 * acos(-1.0d0)
    levels = number_of_bits(n) - 1
    irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
    forall (i=0:n-1) c(i) = c(irev(i))
    do l = 1, levels
        ! --- for each level in the FFT
        m = ishft(1, l)
        m2 = ishft(1, l - 1)
        do k = 0, n - 1, m
            ! --- for each butterfly in a level
            do j = k, k + m2 - 1
                ! --- for each point in a half bfly
                ce = exp(cmplx(0.0, (j - k) * -two_pi/real(m)))
                cr = ce * c(j + m2)
                cl = c(j)
                c(j) = cl + cr
                c(j + m2) = cl - cr
            end do
        end do
    enddo
end subroutine fft
```
Productive Parallel 1D FFT \((n = 2^k) \)

```fortran
subroutine fft(c, n)
    implicit complex(c)
    dimension c(0:n-1), irev(0:n-1)
!HPF$ processors p(number_of_processors())
!HPF$ template t(0:n-1)
!HPF$ align c(i) with t(i)
!HPF$ align irev(i) with t(i)
!HPF$ distribute t(block) onto p
    two_pi = 2.0d0 * acos(-1.0d0)
    levels = number_of_bits(n) - 1
    irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
    forall (i=0:n-1) c(i) = c(irev(i))
    do l = 1, levels             ! --- for each level in the FFT
        m = ishft(1, l)
        m2 = ishft(1, l - 1)
        do k = 0, n - 1, m         ! --- for each butterfly in a level
            do j = k, k + m2 - 1    ! --- for each point in a half bfly
                ce = exp(cmplx(0.0,(j - k) * -two_pi/real(m)))
                cr = ce * c(j + m2)
                cl = c(j)
                c(j) = cl + cr
                c(j + m2) = cl - cr
            end do
        end do
    enddo
end subroutine fft
```
Productive Parallel 1D FFT (n = 2^k)

subroutine fft(c, n)
 implicit complex(c)
 dimension c(0:n-1), irev(0:n-1)
 !HPF$ processors p(number_of_processors())
 !HPF$ template t(0:n-1)
 !HPF$ align c(i) with t(i)
 !HPF$ align irev(i) with t(i)
 !HPF$ distribute t(block) onto p
 two_pi = 2.0d0 * acos(-1.0d0)
 levels = number_of_bits(n) - 1
 irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
 forall (i=0:n-1) c(i) = c(irev(i))
 do l = 1, levels
 m = ishft(1, l)
 m2 = ishft(1, l - 1)
 do k = 0, n - 1, m
 do j = k, k + m2 - 1
 ce = exp(cmplx(0.0,(j - k) * -two_pi/real(m)))
 cr = ce * c(j + m2)
 cl = c(j)
 c(j) = cl + cr
 c(j + m2) = cl - cr
 end do
 end do
 enddo
end subroutine fft

partitioning the j loop is driven by the data accessed in its iterations
Personable Parallel 1D FFT ($n = 2^k$)

```fortran
subroutine fft(c, n)
    implicit complex(c)
    dimension c(0:n-1), irev(0:n-1)
!HPF$ processors p(number_of_processors())
!HPF$ template t(0:n-1)
!HPF$ align c(i) with t(i)
!HPF$ align irev(i) with t(i)
!HPF$ distribute t(block) onto p
    two_pi = 2.0d0 * acos(-1.0d0)
    levels = number_of_bits(n) - 1
    irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
forall (i=0:n-1) c(i) = c(irev(i))
do l = 1, levels     ! --- for each level in the FFT
    m = ishft(1, l)
    m2 = ishft(1, l - 1)
    do k = 0, n - 1, m  ! --- for each butterfly in a level
        do j = k, k + m2 - 1 ! --- for each point in a half bfly
            ce = exp(cmplx(0.0,(j - k) * -two_pi/real(m)))
            cr = ce * c(j + m2)
            cl = c(j)
            c(j) = cl + cr
            c(j + m2) = cl - cr
        end do
    end do
enddo
end subroutine fft
```

partitioning the k loop is subtle: driven by partitioning of j loop

partitioning the j loop is driven by the data accessed in its iterations
Productive Parallel 1D FFT ($n = 2^k$)

```fortran
subroutine fft(c, n)
  implicit complex(c)
  dimension c(0:n-1), irev(0:n-1)
  !HPF$ processors p(number_of_processors())
  !HPF$ template t(0:n-1)
  !HPF$ align c(i) with t(i)
  !HPF$ align irev(i) with t(i)
  !HPF$ distribute t(block) onto p
    two_pi = 2.0d0 * acos(-1.0d0)
    levels = number_of_bits(n) - 1
    irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
    forall (i=0:n-1) c(i) = c(irev(i))
    do l = 1, levels
      m = ishft(1, l)
      m2 = ishft(1, l - 1)
      do k = 0, n - 1, m
        do j = k, k + m2 - 1
          ce = exp(cmplx(0.0,(j - k) * -two_pi/real(m)))
          cr = ce * c(j + m2)
          cl = c(j)
          c(j) = cl + cr
          c(j + m2) = cl - cr
        end do
      end do
    enddo
end subroutine fft
```

partitioning the k loop is subtle: driven by partitioning of j loop

stride is problematic for polyhedral methods

partitioning the j loop is driven by the data accessed in its iterations
Some Lessons from HPF

• Good parallelizations require proper partitionings
 —inferior partitionings will fall short at scale

• Excess communication undermines scalability
 —both frequency and volume must be right!

• Must exploit what smart users know
 —allow the power user to hide or avoid latency

• Single processor efficiency is critical
 —node code must be competitive with serial versions
 —must use caches effectively

• Abstraction is good in moderation
 —compilation challenges for abstract models can sometimes be daunting
Challenges of Exascale Hardware

- Complexity
- Concurrency
- Scale
- Heterogeneity
 - architecture
 - performance
- Failure and resilience
- Power
 - focus: maximize locality to minimize data movement
Some Exascale Technology Needs

- Programming models, compilers, runtime systems
 - Communication
 - point-to-point, collective, near neighbor, ...
 - Synchronization
 - ordering, mutual exclusion, producer consumer
 - Partitioning
 - Placement
 - Scheduling

- Tools ecosystem
A Hierarchy of Programming Models

- Domain specific languages
 - e.g., TCE, SPIRAL
- Frameworks
 - e.g., Chombo
- Programming languages
- Libraries
Programming Models for the Exascale

• MPI + X is the front runner

• MPI role at exascale [“MPI at Exascale”, Thakur, Scidac 2010]
 — “MPI being used to communicate between address spaces”
 — “use some other shared-memory programming model (OpenMP, UPC, CUDA, OpenCL) for programming within an address space”

• Why not just X?
 — skeptic: but MPI provides all the things I know and love
 • communicators for processor subsets
 • collectives across communicators
 — PGAS model can provide those directly instead
 • ... along with compiler support to make it easier to use!
Example: Coarray Fortran 2.0

- **Teams**: process subsets, like MPI communicators
 - formation using `team_split` (like `MPI_Comm_split`)
 - collective communication
- **Topologies**
- **Coarrays**: shared data allocated across processor subsets
 - declaration: `double precision :: a(:,,:)[*]`
 - dynamic allocation: `allocate(a(n,m)[@row_team])`
 - access: `x(:,n+1) = x(:,0)[p]` (*p is a rank in the “default team”*)
- **Latency tolerance**
 - hide: *predicated asynchronous copy*, asynchronous collectives
 - avoid: function shipping
- **Synchronization**
 - event variables: point-to-point sync; async completion
 - finish: SPMD construct inspired by X10
- **Copointers**: structured pointers to distributed data (in progress)
- **Multithreading**: compiler and runtime support for work stealing (in progress)
- **Accelerated computing**: map loop nests (semi-)automatically to manycore (planned)
Scalable PGAS Programming Model

Issues (see “MPI at exascale,” Thakur, SciDAC 2010)

• Scalable bookkeeping state
 — maintain little global state per “process”
 • avoid full knowledge of processor subsets
 — CAF 2.0 team construction applied to MPI
 • “Exascale Algorithms for Generalized MPI_Comm_Split”
 [Moody et al. EuroPar 11]

• Very little memory management within MPI
 — all memory for communication can be in user space
 — consistent with PGAS models

• Collectives are useful, scalable, and efficient

• “Some parts of MPI are being fixed for exascale” (MPI-3)
 — RMA
 — non-blocking and (maybe) neighborhood collectives
Mapping to Heterogeneous Nodes

- Explicit programming: CUDA, OpenCL?
 - too low level and detailed

- Today: Cray’s accelerator pragmas [Levesque, SciDAC 2011]
 - !$omp acc_region_loop private(...)
 !$omp acc_data acc_copyin(...)
 ...
 !$omp end acc_region_loop
 ...
 !$omp acc_update host(x)
 ...
 !$omp acc_update acc(x)
 !$omp acc_data present(...)
 - benefits: handle detailed synthesis of code for manycore

- Future: preference for more declarative pragmas, if any
 - leverage type system: constant variables can be “copyin”

- Challenge: semi-automatically mapping complex codes
 - managing irregular data, handling dependences, ...
PGAS Data Models at Scale

- Distributed state
- Distributed descriptors
- Scalable data movement
- Scalable synchronization
- Emerging issue: fault tolerance
 - persistance
 - recoverability

- Approach: all members of a team do the following ...
 - agree on a handle
 - allocate a piece of the data
 - data movement and synchronization: point-to-point or collective
Support for Coupling - I

Location service

— locate a component by name, e.g. “ocean simulation component”
 • returns a handle, and an identifier for a node
— service must be distributed for scalability
— fault tolerance: no single point of failure
 • service implementation could use replication
Scalable binding

— **example: CESM**
 - model coupler must bind to ocean and atmosphere components
 - use a handle from a registry to arrange for scalable communication with each component
 - establish appropriate many-many, many-one, or one-many mapping between corresponding ranks in coupler and target component

— **fault tolerance**
 - log communication through a binding
 - notice when a binding disappears
 - be able to re-establish a binding using location service
Locality-aware Dynamic Scheduling

• Issues
 — incoming work from function shipping
 — critical path

• Approaches
 — need scalable, locality-aware, priority-aware strategies
 — rethink data structures, e.g. recursive array layouts
 — support affinity hints
 — rethink dynamic scheduling decomposition
 • e.g., use traversal orders derived from space filling curves for hierarchical locality
 — provide support for reordering data and computation for irregular problems
 • explicitly represent schedules for irregular work
 • recompute schedules on demand, e.g. periodic sorting
 • reuse schedules to amortize overhead
 — tighter integration with HW
Supporting the Tools Ecosystem

- Performance tools will be extremely important for the exascale
- Pinpoint and quantify power consumption for tuning
- Pinpoint inefficiencies
 - insufficient parallelism
 - power consumption
 - data movement
 - overhead
cilk int fib(n) {
 if (n < 2) return n;
 else {
 int x, y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x + y);
 }
}
Cilk Program Execution using Work Stealing

- Challenge: Mapping logical tasks to compute cores
- Cilk approach:
 - lazy thread creation plus work-stealing scheduler
 - \textit{spawn}: a potentially parallel task is available
 - an idle thread steals tasks from a random working thread

Possible Execution:
thread 1 begins
thread 2 steals from 1
thread 3 steals from 1
etc...
Call Path Profiles with Work Stealing

• Consider thread 3:
 — physical call path:
 — logical call path:

Logical call path profiling: Recover full relationship between physical and user-level execution

Work stealing separates user-level calling contexts in space and time
Attributing Costs: Blame Shifting

• Problem: in many circumstances sampling measures symptoms of performance losses rather than causes
 — worker threads waiting for work
 — threads waiting for a lock
 — MPI process waiting for peers in a collective communication

• Approach: shift blame for losses from victims to perpetrators
 — who is failing to shed parallel work to keep everyone busy
 — who is holding the lock and stalling others
 — who is delaying progress at a collective call site

• Flavors
 — analysis only
 — active measurement
Barriers to Adopting New Models

- Application codes are long lived
 - must run on several generations of architecture

- Developers are conservative
 - want to use standard languages

- Moving forward ...
 - work with language standards committee to add new features