Science Drivers

- **Data Tsunami: Terabyte – Petabyte – Exabyte**
 Emerging large-scale science experiments (LHC, ITER, SNS, climate modeling, etc.) will generate large amount of data to be distributed for analysis

- **Petascale and exascale simulation will also generate unprecedented amount of data**

- **Networks with unprecedented throughput, agility, and security will be needed to:**
 (a) Effectively and securely interconnect national and international science facilities
 (b) Efficiently manage and distribute massive data estimated in petascale and exascale
 (c) Tele-operation technologies for efficient use international large-scale science facilities (LHC, ITER, etc.)
DOE Investments in Networks for Open Science

- **ESnet - $25M/year**: A high-performance production network facility supporting scientific research activities

- **High-performance network research program ($15M/year)** for developing advanced network technologies to support DOE science mission

- **Experimental network facilities to prototypes advanced network capabilities that are feasible but not commercially available for production quality**
ESnet4
60 Gbps in 2008
500 Gbps by 2010

Core network fiber path is ~ 14,000 miles / 24,000 km
Network Capabilities
Petascale-Exascale Science

- **Petascale/exascale computing**
 - Leadership computing facility at ORNL (Petaflops by 2008)
 - Leadership computing facility at ORNL (Petaflops by 2010)
 - NERSC computing facility at LBNL (Petascale by 2009)

- **Sources of Petabyte/Exabyte-scale scientific data**
 - A) Computing at the petascale
 - B) Large-scale science experiments (ITER, LHC, SNS)

- **Large-scale distributed scientific collaboration using petascale/Exascale facilities and data archives**

- **Petascale/Exascale will require Terabits Networking**
Terabits Networks Challenges

- What aspects of traditional networks components, protocols, routing algorithms, traffic approaches will be broken when networks operate terabits/sec level

- The Terabits Networking:
 - Terabits/sec in core (aggregate and single flows)
 - Multi-Gigabits/sec in hosts (single flow)
 - kbps/sec to Sensors

- The limits of packet-switching for terabits networking:
 - How well will IP/TCP, packet-based QoS, packet capture/processing (IDS), network failures, peering, etc., perform in terabits networks
Specific Networking Issues Unique to DOE

- Dynamic multi-capabilities networking (Differentiated capabilities Networking) to meet diverse science applications needs

- High-throughput transport protocols, host stacks, and e2e data distribution services (can TCP/IP do the job?)

- Terabits-capable cyber-security systems for open science

- High-performance middleware and federation networking services for distributed petascale science and large-scale scientific collaboration
Next-Generation Transport Protocols Features

- Dynamically reconfigurable/composable and easily adaptable to different applications and different transport networks (optical, satellite, wireless, sensornets, etc.)

- Easily optimizeable when operating in shared (packet-switched), dedicated network environments (circuit-switched), and other emerging networking paradigms

- Dynamically reconfigurable to operate efficiently in terascale networks (single flow) and sensor networks

- Has the capability to implement on-demand cyber security capabilities

- Other future proof features
Dynamic multi-capabilities networking

- **Network virtualization:**
 - Each partition created dynamically on-demand to meet specific of science application
 - A partition may be at any of the network layers
 - Peering of partitions in inter-domain (federation) networking setting

- **Control Plane Technologies for Network Virtualization**
 - In-band/out-of-band control plane (centralized/decentralized)
 - Nested control planes and inter-domain control planes technologies

- **Current Network Virtualization in DOE (Hybrid Optical network)**
 - 3 partitions (layer 3 – IP network Layer networking 2.5 dynamic Ethernet circuits, and layer 2 dynamic SONET networks)
 - 4 partitions network (Partitions in layers 3, 2.5, 2 and 1)
Experimental Networks in DOE

- **Experimental Networking facilities**
 - **Ultra-Science Network Testbed** - A 20 Gbps nation-wide layer 2 optical/SONET network for developing out-of-band centralized/decentralized control plane technologies.

 - **On-Demand Secure Circuits and Advanced Reservation Systems (OSCARS)** - An out-of-band MPLS-based control plane technology design to guaranteed multi-domain e2e services across DOE/ESnet, Internet2, and European DANTE networks.

 - **Virtual Optical Networks Testbed** - A planned extended GMPLS-based control plane for layer 1 networks to be integrated to integrated with OSCARS.
DOE Ultra-Science Net Testbed

- Dynamic of layer 2.5 and 2 circuits provisioning
- Secure out-of-band control Plane
- Just-in-time scheduling and reservation
- Centralized scheduling and reservation
- Hybrid networking: integrated packet and circuit-switched capabilities
- Decentralized scheduling and reservation (GMPLS extensions)
- Cascaded control planes, nested control planes

Managed by Oak Ridge National Laboratory
On-Demand Secure Circuits and Advanced Reservations Systems (OSCARS)

- Control Plane in the IP layer
 - Data plane in layers 3, 2.5 and 2
- Participants (ESnet, Internet2/HOPI, DANTE, Dragon)
Layer 1 Optical Virtual Networks

- Dynamic creation of networks in the optical layer (layer)

- Out-of-band control plane for layer 1 partition

- Joint effort of ESnet and Internet2 within Infinera/Level3 infrastructure

- Vertical and horizontal integration control plane technologies across different layers
• Meta-Scheduler Approach
• Same set of Web Services used for linear instantiation model can be used by a high level process to build services:
 • Topology Exchange, Resource Scheduling, Signaling, User Request
• A key issue is that this requires a trust relationship between the “meta-scheduler” and all the domains with which it needs to talk
Lessons Learned from DOE
Experimental networking Activities

- A robust and secure multi-domain control plane is critical to providing guaranteed e2e QoS services beyond Best-effort IP

- The core technology that will make network dynamic virtualization at each layer possible is a robust and secure control plane is

- We don’t have a good understanding on how to design and build cascaded and nested control planes

- We need to extend existing routing algorithms to accommodate advanced reservations and scheduling

- Transport protocols should be dynamically optimized to the type of applications using it and to the transport networks serving the application
Related Activities

• Mathematical Research Challenges in Optimization of Complex Systems Workshop (Dec 7-8, 2006, Marriott Bethesda North Hotel and Conference Center)
 - Large-scale networks proposed as a complex system
 - Would lead to an R&D Call

• Mathematics for large data sets
 - Under discussion for possible workshop and call

• Network and Cyber Security Science
 - New fundamental theories and mathematics that can enable the development, understanding, management, and operations of engineered complex systems like networks