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Foreword

This volume summarizes the 32* annual Research Meeting of the Atomic, Molecular and
Optical Sciences (AMOS) Program sponsored by the U. S. Department of Energy (DOE),
Office of Basic Energy Sciences (BES), and comprises descriptions of the current
research sponsored by the AMOS program. The participants of this meeting include the
DOE laboratory and university principal investigators (PIs) within the BES AMOS
Program. The purpose is to facilitate scientific interchange among the PIs and to promote
a sense of program identity.

The BES/AMOS program is vigorous and innovative, and enjoys strong support within
the Department of Energy. This is due entirely to our scientists, the outstanding research
they perform, and the relevance of this research to DOE missions. FY 2012 has been an
exciting year for BES and the research community. Continuing initiatives included the
Early Career Research Program, the Energy Frontier Research Centers and the Energy
Innovation Hubs. As illustrated in this volume, the AMOS community continues to
explore new scientific frontiers relevant to the DOE mission and the strategic challenges
facing our nation and the world.

We are deeply indebted to the members of the scientific community who have
contributed their valuable time toward the review of proposals and programs, either by
mail review of grant applications, panel reviews, or on-site reviews of our multi-PI
programs. These thorough and thoughtful reviews are central to the continued vitality of
the AMOS program.

We are privileged to serve in the management of this research program. In performing
these tasks, we learn from the achievements of, and share the excitement of, the research
of the scientists and students whose work is summarized in the abstracts published on the
following pages.

Many thanks to the staff of the Oak Ridge Institute for Science and Education (ORISE),
in particular Connie Lansdon and Tim Ledford, and to the Bolger Conference Center for
assisting with the meeting. We also thank Diane Marceau, Robin Felder, and Michaelena
Kyler-King in the Chemical Sciences, Geosciences, and Biosciences Division for their
indispensable behind-the-scenes efforts in support of the BES/AMOS program. We also
appreciate Mark Pederson’s coordination of computational resources and interactions
with related DOE program offices.
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1 OVERVIEW

The Atomic, Molecular, and Optical Physics program aims at a quantitative understanding of x-ray
interactions with atoms and molecules from the weak-field limit explored at the Advanced Photon
Source (APS) to the strong-field regime accessible at the Linac Coherent Light Source (LCLS).
Single photon x-ray processes can be dramatically altered in the presence of strong optical fields,
and we exploit ultrafast x-ray sources to study these effects. Conversely, the atomic or molecular
response to strong optical fields is itself of great interest due to the discovery of phenomena such
as high-order harmonic generation and attosecond pulse generation. The use of tunable, polarized
x-rays to probe such processes in situ can lead to new physical insights and quantitative structural
information not accessible by other techniques. Theory is a key component of our program by pre-
dicting phenomena that motivate experiments and by simulating and interpreting measured results.
Nonlinear and multiple-photon phenomena in x-ray and inner-shell interactions are explored using
the intense, femtosecond x-ray pulses generated at the LCLS free-electron laser. The APS remains
our primary source of intense, tunable, polarized x rays both for time-resolved laser-pump /x-ray-
probe experiments and for basic studies of x-ray interactions with atoms, molecules, and complex
systems such as solvated molecules. To exploit the full x-ray flux available at the APS, we are de-
veloping high-repetition-rate laser systems for pump-probe experiments at MHz pulse rates. This
capability enables measurements of laser-induced, transient electronic and atomic structures with
high sensitivity. High-repetition-rate techniques will also be exploited for pump-probe experiments
with ~2 ps x-ray pulses that will be generated at Short Pulse X-ray (SPX) beamlines as a major
component of the APS Upgrade project. Optical lasers can also trap, orient, and order nanoparti-
cles, providing a new route towards manipulation and assembly of nanomaterials. X-ray diffraction
is the only technique that has the capability of providing three-dimensional, in situ information
about the structure, orientation, and arrangement of molecules and nanoparticles as they inter-



act with light. Hence, we are developing laser-control methods to manipulate nanoparticles in
combination with x-ray imaging at the APS.

2 INTENSE X-RAY PHYSICS

Hidden resonances and nonlinear x-ray processes at high intensities
(E. P. Kanter, B. Krissig, R. Santra,’»? S. H. Southworth, L. Young, J. Bozek?®, L. DiMauro?, N.
Berrah®, P. Bucksbaum®, D. Reis®)

The first experiments at LCLS all studied photon-matter interactions in a continuum, in prin-
ciple, far removed from resonances [1, 2, 3, 4, 5, 15]. In this later followup study, we instead
investigated resonant nonlinear x-ray processes in atomic Ne at high x-ray intensity. At high pho-
ton energies resonant absorption by inner-shell electrons dominates all x-ray photoprocesses, with
cross sections ~100x greater than those for non-resonant valence ionization. On an inner-shell res-
onance, absorption/stimulated emission cycles (Rabi flopping) can be the dominant photoinduced
process and resonances can be used to enhance x-ray multiphoton processes. At photon energies
less than the binding energy of the 1s electron, resonant two-photon absorption has a signficantly
larger cross section than non-resonant two-photon absorption; though both generate the same final
state of the system - an atom with a 1s hole plus an s- or d- wave photoelectron. Capitalizing on
this resonance phenomenon, we studied two-photon absorption in neon at 848 eV, where, as we
demonstrated in a recent publication [16], the first photon ionizes the Ne 2p electron and the second
photon excites the Net 1s-2p resonance. NeT 1s™! K-LL Auger electrons are the signature of this
resonant two-photon creation of a 1s hole. This generation of a 2p hole orbital is advantageous
for observing/studying the Rabi-cycling phenomenon; the Ne™ 1s-2p dipole matrix element is 5.6x
larger than that for the 1s-3p transition in Ne.

We followed the response of the neon atom on this two photon resonance at 848 eV as a function
of x-ray FEL pulse duration. For short x-ray pulses, the signature of 1s hole creation is weak, but
as the pulse width is raised, the Auger line appears and, at high intensity, is broadened as Rabi-
oscillations become important in comparison to the normal diagram line ('D) measured far above
threshold. Indeed, as expected for the 1s-3p transition, no such broadening was detected. In addi-
tion to demonstrating the ability to control an inner-shell decay process, this work has important
ramifications for the broader XFEL community. We have discovered previously unexplored x-ray
resonances in ionic species created by the high fluence of the LCLS beam. Such resonances, with
consequently large cross sections, can contribute significantly to unexpected sample damage in all
experiments at such x-ray intensities and merits further study. We plan further studies aimed at
exploring such sample damage in heavier systems with seeded beams.

Pulse duration measurements at LCLS
(G. Doumy, S. Diisterer,” A. L. Cavalieri," M. Meyer,® R. Keinberger® and other collaborators)

The LCLS x-ray free electron laser is capable of producing very intense x-ray pulses believed to
be as short as a few tens of femtoseconds. Those properties have already revolutionized the field of
ultrafast time resolved x-ray science, in spite of the current lack of exact determination of the pulse
duration characteristics. Any measuring scheme is rendered even more challenging by the SASE
(Self Amplified Spontaneous Emission) operating mode of LCLS, which makes it a purely chaotic
source and ultimately requires a single shot measurement of every shot to get a full characterization
of the source properties. In addition, the SASE operation produces an inherent temporal jitter
between the x-ray pulses and any other laser source operating in parallel, which limits greatly the
resolution of pump-probe techniques commonly used in time-resolved measurements.

The main route followed by our large collaboration to get a handle on those properties consists
in transferring the time properties of the x-ray pulses to electron wave-packets produced during



ionization of a gas target or subsequent Auger decay. The simultaneous presence of a strong laser
field (operating in the visible, IR or THz region) modifies the energy spectrum of those electrons
wave-packets in a deterministic way. It is then possible to extract from the measured final energy
distribution some of the properties of the x-ray pulses, as well as the jitter between the x-rays and
the strong laser field.

In the case of a long x-ray pulse duration compared to the oscillation of the laser electric field,
only statistical information can be obtained. Such an experiment was made using Auger electrons
from Neon atoms after K-edge ionization, with a laser operating at 800 nm. The main conclusion
of the study is that the laser-x-ray timing jitter is significant (~150 fs) and that the x-ray pulse
duration is on average significantly shorter than the electron bunch duration used to generate the
x-ray pulses in the XFEL, e.g., 120 fs instead of 175 fs [17].

When the x-ray pulse duration is comparable with (or shorter than) the oscillation period of
the laser, it is possible to use a streaking mode, where there is a one-to-one correspondence between
the measured photoelectron energy and the time of emission. This method can in principle yield
single-shot, every-shot temporal characterization, and was tested with the LCLS operating in its low
bunch-charge mode, where the pulses are expected to be less than 5 fs, using an IR laser operating
at 2.4 microns. Unfortunately the timing jitter limits the technique by making it impossible to
know the exact field conditions when the streaking happens. Statistical information on an upper
value of the pulse duration can nonetheless be extracted, which confirmed that the pulse duration
was indeed less than 4 fs [30].

The jitter limitation is essentially eliminated when using a laser-derived single cycle terahertz
source, due to its much longer period. First attempts at using this method at LCLS have demon-
strated its potential for a large range of pulse durations, but the resolution is currently experimen-
tally limited to approximately 50 fs. This version of the technique not only gives access to the
pulse duration, but also to the shot-to-shot timing relative to the laser used to generate the THz
radiation.

The behavior of the LCLS x-ray free electron laser can be exquisitely tuned by careful manipu-
lation of the electron beam characteristics before it enters the row of undulators to create the x-ray
pulses. In particular, a clever way to vary the x-ray pulse duration consists in inserting a slotted
foil in one of the bunch compressors where the electron bunch is spread transversely. The part
of the electron beam that goes through the slot is unmodified and participates in lasing as usual,
while the rest experiences a spoiled emittance and does not participate in the subsequent lasing
process. This should allow continuous variation of the pulse duration.

In addition, a foil with two slots exists, which should allow for creating two x-ray pulses with
a fixed, but adjustable, delay. A full characterization of such a system is nonetheless necessary,
since it is not known whether two pulses are always created, or what their relative strength is, and
any integrated measurement (e.g. total energy) would be unable to provide any insight into it.
Terahertz streaking, as described above, would be a good way to access those properties on every
shot. Three shifts of beamtime have been awarded in December 2012 for such measurements.

Angle-resolved measurement of laser-assisted Auger decay in neon at LCLS
(G. Doumy, M. Meyer,® N.M. Kabachnik,® A. L. Cavalieri,! and other collaborators)

When a gas target is ionized by a short, intense x-ray pulse like the ones produced at the LCLS,
in the presence of a strong laser field, sidebands are known to appear in the electron spectrum.
These sidebands arise due to interaction of the photo- or Auger electrons with the laser field and
are associated with absorption or emission of a few ir photons by the outgoing electrons. For the
decay of an inner-shell vacancy, this phenomenon is known as laser-assisted Auger decay (LAAD).

In experiments realized at LCLS [24] on the K-LL Auger decay in Neon in the presence of an
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the simple second-row elements, e.g. neon, in that intermediate electron shells can be addressed
selectively. In this photon energy regime at ultrahigh intensities, broadband SASE pulses are
predicted to initiate then facilitate chain reaction ionization via successive resonance excitation,
whereas narrowband seeded pulses cannot. Understanding electron dynamics in transition metal
atoms is also of vital importance for establishing the reliability of multiple wavelength anomalous
dispersion (MAD) phase retrieval methodologies at high intensity. Therefore, we plan to charac-
terize ultraintense x-ray interactions with nickel atoms using ion time-of-flight and x-ray emission
spectroscopies for three relevant photon energy regimes as a function of bandwidth, pulse energy,
and pulse duration. The nickel atom is an ideal target as the range for self-seeded LCLS operation
(7.1-9.5 keV) spans the nickel K-edge (8.333 keV).

Ultrafast absorption of intense x rays by nitrogen molecules
(C. Buth, J.-C. Liu,'> M. H. Chen,'? R. N. Coffee,® N. Berrah,® and other collaborators)

We study theoretically nitrogen molecules (N3) in ultrashort and intense x rays from the free
electron laser (FEL) Linac Coherent Light Source (LCLS). Specifically, we examine ion yields and
the average charge state and compare with experimental data from LCLS. The description of the
interaction is set out from atomic rate equations. The equations are formulated using all one-x-
ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized
nitrogen atoms. We use a series of phenomenological models reaching beyond a single atom: first,
symmetric sharing of charges is considered; second, a fragmentation matrix model is developed
[Fig. 2a] and Ref. [25]. The hints from these models are used to devise a third model based on
molecular rate equations which are centered around the formation and decay of single and double
core holes, the metastable states of N%Jr, and molecular fragmentation [Fig. 2b]. The crucial role
of the progression in the actual pulse energy is revealed, the lifetime of the metastable states is
approximately found, and the role of double core holes and charge redistribution are exhibited.
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Figure 2: Average charge state of nitrogen molecules (N9) in ultrafast and intense x rays. (a) Single-atom,
symmetric sharing, and fragmentation-matrix models compared with experimental data. Actual LCLS pulse
energies are fractions of the nominal pulse energy of 0.26 mJ: 31% (280 fs), 25% (80 fs), 16% (7 fs) and
for 0.15 mJ: 26% (4 fs). Figure adapted from Ref. [25]. (b) Molecular rate equation model compared
with experimental data involving all channels [single core holes (SCHs), double core holes on a single site
(ssDCHs) and on two sites (tsDCHs)] and only a subset. Actual pulse energies are of 0.26 mJ: 38% (280 fs),
30% (80 fs), 16% (7 fs) and of 0.15 mJ: 24% (4 1s).

Further, we study nuclear dynamics induced by multiple ionization in Ny [33]. We use the fact
that the intense LCLS pulses cause multiple core-level photoabsorption with subsequent Auger de-
cay processes. The timing dynamics of the photoabsorption and dissociation processes is mapped
onto the kinetic energy of the fragments. This allows us to find the average internuclear separation



for molecular photoionization steps and obtain the average time interval between the photoab-
sorption events. Using multiphoton ionization as a tool of intrapulse pump-probe scheme, we
demonstrate the change in the progression of the ionization and nuclear dynamics as we vary the
LCLS pulse duration.

Time-dependent resonance fluorescence
(S. M. Cavaletto,'* C. Buth, Z. Harman,'* E. P. Kanter, S. H. Southworth, L. Young, and C. H.
Keitel'4)

Resonance fluorescence is one of the cornerstones of quantum optics. The spectrum of resonance
fluorescence is experimentally measured by detecting the energy distribution of photons that are
scattered by an ensemble of atoms or ions driven by a near-resonant electric field. The simplest
case, namely a two-level system driven by monochromatic light, has been extensively studied at
optical frequencies. In this case, nonlinear effects such as dynamic Stark splitting take place for
strong driving: the intense driving field induces Rabi oscillations of the atomic system, whose
frequency is related to the intensity of the field itself. This nonlinear effect clearly manifests itself
in the so-called Mollow triplet in the spectrum of resonance fluorescence for continuous-wave light.

For x-ray transitions the 