Research Activity: Synthesis and Processing Science
Division: Materials Sciences and Engineering
Primary Contact(s): Timothy Fitzsimmons (Tim.Fitzsimmons@science.doe.gov; 301-903-9830)
Team Leader: Helen Kerch (Acting)
Division Director: Harriet Kung

Portfolio Description:
This activity supports basic research in synthesis and processing science for innovative synthesis of new materials with desired structure, properties or behavior; to understand the physical phenomena which underpin materials synthesis such as diffusion, nucleation and phase transitions; and to develop in situ monitoring and diagnostic capabilities. Examples of activities in synthesis and processing include: (1) the physics of growth of complex thin films and nanoscale objects with an emphasis on atomic layer-by-layer control; (2) preparation techniques for novel single crystal and bulk materials having novel nanoscale attributes; (3) understanding the contributions of the liquid and other precursor states to the processing of bulk nanoscale materials; and (4) low energy processing techniques for large scale nanostructured materials. This activity includes the operation of the Materials Preparation Center at the Ames Laboratory, which develops innovative and superior processes for materials preparation and provides small quantities of research grade, controlled purity materials and crystals that are otherwise not available to academic, governmental, and industrial research communities for research purposes.

Unique Aspects:
• The Materials Preparation Center (MPC) at the Ames Laboratory is operated for the purposes of understanding and further developing innovative and superior processes and for providing small quantities of unique, research-grade materials that are not otherwise available to academic, governmental, and industrial research communities.
• World-leading thin-film growth capabilities reliant on in situ diagnostics have been developed for the synthesis of thin-films.
• Bulk phase transitions and transformations underlying the advancement of materials process science are studied using highest purity materials, in situ characterization techniques, and simulations.

Relationship to Other Programs:
This program is intimately related to the other research activities in the BES Materials Sciences and Engineering Division as the synthesis and processing of materials is a critically important area of materials research and development. The MPC specializes in the preparation, purification, and fabrication of high-purity rare earth metals, refractory metals, alkaline earth metals, alloys in single crystal and polycrystalline form, metal powders, and metallic and ceramic coatings. The MPC has responded to over 3800 requests for specialty materials preparation and characterization services to academic, government, and industrial research laboratories since its establishment in 1981. The facilities and capabilities of the MPC are also made available to further understanding of process science on the basis of user proposals.

Additional linkages include:
Department of Energy (DOE)
• EERE/Transportation Technologies/Hydrogen Contractor’s Meeting, May, 2006
• Energy Materials Coordinating Committee (EMaCC)

Interagency
• Interagency Working Group on Hydrogen
• Interagency Working Group on Manufacturing
• DOE lead on Nanomanufacturing
• MatTec Communications Group for Metals
• MatTec Communications Group for Structural Ceramics
• National Nanotechnology Initiative (NNI)
Significant Accomplishments:
This program has changed the way people understand and think about the preparation of materials. Experimental, theoretical, and computational tools are developed and applied to advance the scientific understanding of complicated thermodynamic and kinetic phenomena underlying processes ranging from self-assembly to far-from-equilibrium reactions that take place in welding. In the epitaxial growth area, a new technique has been developed to deposit ultrathin metallic layers on oxide, which will help next-generation computers boot up instantly by making entire memories immediately available for use. The thin metal layer achieves epitaxial crystallinity after the deposition of only a few atomic layers. This process should be applicable to a wide range of metals on metal oxides. Significant progress has been made in the growth of single crystalline thin films of ferroelectric and ferromagnetic oxides using the molecular-beam epitaxy technique. New candidate ferromagnetic semiconductors have recently been grown by doping transition-metal oxides with magnetic impurities, which are nontraditional but strongly magnetic and thermally robust diluted magnetic semiconductors. Recent breakthroughs in the synthesis of complex oxides have brought the field to an entirely new level, at which complex artificial oxide structures can be realized with an atomic-level precision comparable to that well known for semiconductor heterostructures. Not only can the necessary high-quality ferroelectric films be now grown, but ferroelectrics can be combined with other functional oxides, such as high-temperature superconductors and magnetic oxides, to create multifunctional materials and devices. The shrinking of the relevant lengths to the nanoscale produces new physical phenomena.

New techniques, developed to measure local electromagnetic properties, now permit a fundamental understanding of the mechanism by which solid-solid interfaces and crystalline defects control the behavior of nanostructured as well as macroscopic materials. For the first-time, suppression in dielectric-constant has been observed directly at grain boundaries, contradicting traditional assumptions generally made about grain-boundary behavior, using scanning impedance microscopy and nano-impedance spectroscopy. In the welding area, a coupled thermodynamic and kinetic model was developed to describe stability of the principal phases in stainless steels. This knowledge has led to the modification of the standard diagram used to choose welding electrode compositions for stainless steels. Additional modeling efforts using massively parallel computers have permitted the linkage of macro- and microscopic scale phenomena during the melting and solidification of a weld. This permits simulation and visualization of weld microstructure as a function of processing conditions, e.g., during the melting, addition of new compounds, and resolidification that occurs during welding. Experimentally, tracking of real-time phase transformations that occur during weld solidification was made possible using synchrotron radiation and provided invaluable data to support scientific modeling and simulation leading to better electrode design. Recognitions include the recipients of the Spararagen Award and the Warren F. Savage Award from the American Welding Society.

Other achievements include:
- In the self-assembly area, developing scientific understanding of surfactant interactions with ceramic compounds and other materials, including biological tissues, has permitted the growth of ordered porous ceramic structures with hierarchical architecture spanning from the nano- to the macro-scale.
- A rapid, efficient self-assembly process for making nanophase composites that mimic the complex construction of seashells was developed resulting in a strong and tough (crack resistant on impact loading) material.
- Ceramic substrates were synthesized with tailored and regularly ordered nanoscale pores of controlled shapes and sizes. These substrates were found to remove deadly heavy metals such as mercury, lead, and silver from contaminated water.
- A breakthrough in the fundamental understanding of the processing of ceramic aerogels led to a new, non-toxic, low temperature, and low-pressure process to produce films in an environmentally benign manner. This discovery overcame the sixty-year barrier to the large-scale commercial use of these films, won the prestigious Iler Award of the American Chemical Society and was cited as an important discovery by the Wall Street Journal.
- The Materials Preparation Center has completed over 3800 requests for specialized materials preparation and characterization services since its establishment. In addition to the previously mentioned accomplishments, MPC has enabled the technologies of (1) lead free solder, (2) magnetocaloric gadolinium-silicon-germanium alloys, (3) recyclable lightweight automotive composite materials, and (4) Terfenol-D, a magnetostrictive alloy
containing terbium, dysprosium, and iron that was developed at the Center and led to the spin-off of a new private sector company which markets this material.

- Quasicrystal coatings produced by plasma-arc spray that have superior wear resistance and thermal insulation behavior coupled with reduced surface friction for potential thermal barrier wear resistant coating applications in aircraft-engine components.
- A uniform three-dimensional coating process known as "Plasma Ion Immersion Processing" was improved so as to fabricate hard coatings, such as diamond-like carbon, that exhibit low sliding friction and superior wear resistance. This process is cost-effective and achieves a high rate of implantation over a very large surface area with uniform thickness and coating quality over complex three-dimensional geometries.
- A nanophase molecular template method was developed to synthesize films that exploit the dielectric properties of air to achieve ultra-low dielectric constants for the next generation of microelectronic devices and computers.
- A unified, fundamental understanding of the multifaceted behavior of H in Mg-doped, p-type GaN was developed that, in several respects, goes beyond what has previously been achieved for H in compound semiconductors. These studies represent a new level of quantitative understanding of hydrogen behavior within compound semiconductors.
- Investigation of the dynamics of self-assembled supramolecular organic oligomers, polymers, and metal chelate systems has revealed methods to control both intra- and intermolecular interactions leading to systems with tunable optical properties.

Mission Relevance:
This research supports DOE overarching goals for improved energy efficiency, protection of the environment, and the advancement of scientific knowledge. Specific relevant applications include discovery of new materials for efficient energy production and use; hard and wear resistant surfaces to reduce friction and wear; high-rate, superplastic forming of light-weight, metallic alloys for fuel efficient vehicles and other structures needed in land and air transportation applications; high-temperature structural ceramics and ceramic matrix composites for high-speed cutting tools, bearings, engines, and turbines (to enable fuel efficiency and low-pollutant emissions); ordered intermetallic alloys for harsh applications (requiring heat, load, wear, and corrosion resistance), including engines and turbines (also to enable fuel efficiency and low pollutant emissions); response of magnetic materials to applied static and cyclical stress; plasma, laser, and charged particle beam surface modification to increase corrosion and wear resistance; and welding and joining, including dissimilar and non-metallic materials.

Scientific Challenges:
Understanding the physics and chemistry of the synthesis and processing, as well as the thermodynamics and kinetics of reaction, of nanoscale materials and structures and the elements of the processing environment are critical to the preparation of larger components. There are significant experimental, theoretical, and computational challenges in understanding what is occurring so that the benefits of nanoscale phenomena can be realized in larger scale components. Major scientific challenges also remain in the fabrication and the fundamental understanding in the non-trivial assemblies of inorganic, organic, composite, and biomimetic materials. There is a need for creative and innovative methods to investigate complex systems, such as composite materials with multifunctionality.

Future efforts are required to synthesize new materials for the advancement of science and technologies, to gain the fundamental understandings for better control of materials manipulation and properties, and to solve materials problems, such as adhesion and stability under thermal and environmental stress. Although there is steady progress in the synthesis and processing of materials, there still exists a serious deficit in the ability to produce (new) materials with desired properties and microstructures by rational design and synthesis. Experimental methods and theoretical models need to be developed to achieve mesosopic structures via various methods, such as self-organized and directed growth. Scientific challenges also lie in new composite materials with various matrices, and in ecologically-benign materials.
Funding Summary:

<table>
<thead>
<tr>
<th>Performer</th>
<th>FY 2005</th>
<th>FY 2006</th>
<th>FY 2007 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Laboratories</td>
<td>15,149</td>
<td>17,083</td>
<td>21,022</td>
</tr>
<tr>
<td>Universities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These are percentages of the operating research expenditures in this area; they do not contain laboratory capital equipment, infrastructure, or other non-operating components.

Projected Evolution:

- Increased emphasis on understanding the opportunities and challenges presented by nanoscale materials and by the processing of larger components containing nanoscale materials
- Science based understanding of advanced synthesis and processing methods such as self-assembly, molecular-directed nanostructure formation, and novel deposition methods will be investigated. This understanding will be applied to attain new structures, to fabricate materials with new functionalities, and to reduce the energy and environmental impact of processing.
- Processing research will be extended to include new ceramic, intermetallic, semiconducting, organic and biomimetic materials and material structures, including nanocrystalline materials, films, coatings, and crystals. Analytical techniques and modeling will be developed and applied to determine and predict the relationship of synthesis and processing parameters to structure, purity, deformability, residual stresses, toughness, adhesion, and electronic, optical, and magnetic properties.
- The single crystal growth and bulk materials processing capabilities of the MPC will be updated and expanded to better serve the x-ray and neutron scattering communities.