Tevatron Physics Status and Plans

- Introduction
- Status of the Physics program
- Physics/publications plans

Gregorio Bernardi, Dmitri Denisov, Luciano Ristori, Costas Vellidis, on behalf of the D0 and CDF collaboration, HEPAP, November 5th 2012
Data and Computing resources

- 15B+9B events total in Run II
- Total dataset 9.5+9 PB (including Monte Carlo)
- Computing resources are well matched to analysis effort
- Constant load of Grid resources over the last year shows the continuous analysis effort

D0 Computing Farm, 6000 CPU
Recent Usage: 88%

Monte Carlo generation
- Effective use of GRID resources
- ~50 million events per week generated

Gregorio Bernardi / LPNHE-Paris
Data preservation is an important goal of the two collaborations.

The most important aspect is the publication of all results obtained in physics, algorithms and detectors groups.

Access to the data will be preserved for about five years after the end of the data taking, including support of analysis software and Monte Carlo generation.

Working on preserving other elements of the accumulated information:
- About 16000 notes at CDF and DZero
- Agenda server with 10,000’s of talks
- Local Web pages

Special CDF and DZero task forces presented their reports to the Lab in August 2012.

In the process of developing detailed plan between CDF, DZero, and Fermilab, not only to preserve the data but also the knowledge on how to look at it successfully.
Both CDF and DZero Collaborations have commitments to accomplish the remaining list of exciting results to come from the Tevatron. Analysis infrastructure and algorithms are well developed.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals FTEs</td>
<td>280</td>
<td>260</td>
<td>~160</td>
<td>~90</td>
<td>~40</td>
</tr>
<tr>
<td>DZero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals FTEs</td>
<td>258</td>
<td>218</td>
<td>~170</td>
<td>~110</td>
<td>~50</td>
</tr>
</tbody>
</table>

~45+50 Ph.D students currently working on their theses at CDF +DZero.
Physics: we’re going strong!

Now measuring it!
Tevatron provided a great dataset

- High data taking efficiency (>90%)
- Full data set available for analysis

19 April 2002 - 30 September 2011

Luminosity (f/b)

- Delivered
- Recorded

High data taking efficiency (>90%)
Full data set available for analysis
Run Stopped September 30th 2011...

July 2nd 2012...less than a year later

We confirmed on full statistics with a $\sim 3\sigma$ excess around 120-130 GeV the 2.4σ excess presented in March 2012 on a smaller statistics.

Rate compatible with SM Higgs
In all sub-channels

Most significant in $H\rightarrow bb$
Fermionic decays of the Higgs-like particle

Submitted July 2012

November 2012:

CMS indications: 2.2 σ @125 GeV / 17 fb$^{-1}$

ATLAS sensitivity \sim1.5 times lower (using 18 fb$^{-1}$) data deficit vs background (μ=-0.4 +/-1.1)

More than half of the total statistics has already been analyzed at LHC

Expected sensitivity will remain limited in this channel at LHC until the 2015 Tevatron provides important complementary information
Recently updated top quark and W boson mass measurements from the Tevatron

\[m_W = 80385 \pm 15 \text{ MeV} \]

\[m_t = 173.2 \pm 0.9 \text{ GeV} \]

The particle discovered at the LHC and seen at the Tevatron looks like the SM Higgs also from the indirect point of view.

Tevatron has unique opportunity to check it indirectly.
Top Mass and cross sections

• Top mass Tevatron combination just published in PRD (on about half of the statistics), more precise than latest preliminary LHC combination (HCP-2012).

<table>
<thead>
<tr>
<th></th>
<th>Top Mass (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tevatron</td>
<td>173.2 ± 0.6 ± 0.8</td>
</tr>
<tr>
<td>LHC</td>
<td>173.3 ± 0.5 ± 1.3</td>
</tr>
</tbody>
</table>

• New measurements and combination in preparation (2013), with full dataset

173.18 ± 0.56 ± 0.75 GeV

\(\chi^2 / \text{dof} = 8.3 / 11 \)
Total uncertainty below 1 GeV!

Top pair production cross section combination close to be released, unique to Tevatron energies

Gregorio Bernardi / LPNHE-Paris
Forward-backward top asymmetry

- In the SM, this effect only happens for \(q\bar{q} \) initial states
- SM predicts no asymmetry at LO in QCD, and a small asymmetry at NLO

Combination of measured asymmetries is \(\sim 3.3\sigma \) from NLO QCD+EWK prediction

Kinematics dependence under study (invariant mass dependence)

Effects at LHC are “diluted” by a factor \(\sim 10 \), more difficult to measure

\[A_{FB} = 18.7 \pm 3.7\% \]
Top quark recent highlights

2012:
Red color code → CDF-D0 combination (or similar paper by the two collaborations)

- Combination of the top-quark mass measurements from the Tevatron collider
- Combination of CDF and D0 measurements of the W boson helicity in top quark decays,

CDF:
- Measurements of the top-quark mass and the tt-bar cross section in the hadronic τ+jets channel
- Precision top-quark mass measurements at CDF
- Measurement of the top quark mass in the all-hadronic mode at CDF

DZero:
- Measurement of Leptonic Asymmetries and Top Quark Polarization in tt Production
- Measurement of the Top Quark Mass in pp Collisions using Events with Two Leptons
- Improved Determination of the Width of the Top Quark
- Evidence for Spin Correlation in tt Production

2011

CDF:
- Evidence for a mass dependent forward-backward asymmetry in top quark pair production
- Search for a very light CP-odd Higgs boson in top quark decays from p-anti-p collisions

DZero:
- Forward-Backward Asymmetry in Top Quark-Antiquark Production
- Measurements of Single Top Quark Production Cross Sections and $|V_{tb}|$ in pp Collisions

Before:
- Observation of single top quark production and measurement of $|V_{tb}|$ by CDF and by Dzero

Gregorio Bernardi / LPNHE-Paris
Due to ppbar collisions, the physics from W and Z asymmetries @ Tevatron will remain competitive for a long time.

$W \rightarrow \mu\nu$ lepton asymmetry with 7.3 fb-1 in review

$W \rightarrow e\nu$

$Z \rightarrow ee$ A_{FB}

$Z \rightarrow \mu\mu$ A_{FB}

- Constrain PDF fits
- Probe quark and electron EW couplings
- Measure $\sin^2 \theta_W^{\text{eff}}$
- Improve W mass measurement
- Search for additional gauge bosons

- Full data set, go into end caps (less dependence on PDFs),
 Target total uncertainty \sim10 MeV

LHC will take a long time to improve on this.
Electroweak recent highlights

2012:

CDF:
Precise measurement of the W-boson mass with the CDF II detector
Measurement of ZZ production in leptonic final states at √s of 1.96 TeV at CDF
Search for the rare radiative decay W→πγ in pp-bar collisions at √s=1.96 TeV

DZero:
Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wy production
Measurement of the WZ and ZZ Production Cross Sections using Leptonic Final States
Measurements of WW and WZ Production in W+jets Final States in pp Collisions
Measurement of the W Boson Mass with the DØ Detector

2011:

CDF:
First measurement of the angular coefficients of Drell-Yan e+e− pairs in the Z mass region
Limits on anomalous trilinear gauge couplings in Zy events from pp-bar collisions at √s=1.96 TeV

DZero:
Wy Production and Limits on Anomalous WWWy Couplings in pp Collisions at √s = 1.96 TeV
Measurement of the sin^2θ_{eff} and Z-Light Quark Couplings using the FB Charge Asymmetry in pp→Z/γ^*→e^+e−
Measurement of the ZZ Production Cross Section in pp Collisions at √s = 1.96 TeV
QCD: alpha_s from 3jet/2jet ratio

\[\alpha_s(Q) \text{ from jet and event shape data} \]

- DØ \(R_{\Delta R} \)
- DØ incl. jets
- ALEPH evt. shapes
- JADE evt. shapes
- ZEUS incl. jets
- H1 incl. jets

\[\alpha_s(M_Z) = 0.1184 \pm 0.0007 \]

\[\text{RGE for } \alpha_s(M_Z) \]

\[Q \text{ (GeV)} \]

\[\alpha_s(Q) \]

Three approaches to 3-jet/2-jet ratio

First publication: Measurement of \(R_{\Delta R} \) with \(\alpha_s \) result, followed by \(R_{3/2} \) and \(R_{\Delta \phi} \) measurements and PRD with all \(\alpha_s \) results

→ First \(\alpha_s \) results above 208 GeV, obtained at LEP

Gregorio Bernardi / LPNHE-Paris
QCD recent highlights

2012:

CDF:
Observation of exclusive $\gamma\gamma$ production in pp-bar collisions at $\sqrt{s}=1.96$ TeV,
Study of substructure of high transverse momentum jets produced in ppbar collisions

DZero:
Measurement of the $\gamma+c$-jet cross section and the ratio $\gamma+c$ and $\gamma+b$ cross sections
Measurement of the pp to $W + b + X$ production cross section at $\sqrt{s} = 1.96$ TeV
Measurement of the Differential Cross Section $d\sigma/dt$ in Elastic pp Scattering at $\sqrt{s} = 1.96$ TeV
Measurement of the Photon + b-Jet Production Differential Cross Section in pp Collisions

2011:

CDF:
Measurement of event shapes in pp-bar collisions at $\sqrt{s}=1.96$ TeV
Measurement of the cross section for prompt isolated diphoton production in pp-bar
Diffractive W and Z production at the Fermilab Tevatron (2010)

DZero:
Measurement of the Inclusive Jet Cross Section in pp Collisions at $\sqrt{s} = 1.96$ TeV
High Mass Exclusive Diffractive Dijet Production in pp Collisions at $\sqrt{s} = 1.96$ TeV
Measurements of Inclusive $W+Jets$ Production Rates as a Function of Jet Transverse Momentum

Gregorio Bernardi / LPNHE-Paris
Heavy Flavor highlights

CPV in B (DZero)

Take advantage of ppbar initial state (→ NO production asymmetries)

Regular reversal of magnet polarities → reduced detector asymmetries

CPV in Charm (CDF)

\[\Delta A_{CP} = A(K^+K^-) - A(\pi^+\pi^-) = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = \Delta A_{CP}^{dir} + A_{CP}^{ind} \Delta \langle t \rangle / \tau. \]

\[\Delta A_{CP} = (-0.62 \pm 0.21 \text{ (stat)} \pm 0.10 \text{ (syst))\%} \]

2.7 standard deviation from 0

Gregorio Bernardi / LPNHE-Paris
Heavy Flavor recent highlights

2012:

CDF:
Measurement of the difference of CP-violating asymmetries in $D^0 \rightarrow K^+ K^-$ and $D^0 \rightarrow \pi^+ \pi^-$ decays
Measurement of CP-violation asymmetries in $D^0 \rightarrow K_s \pi^+ \pi^-$,
Measurements of angular distributions of muons from upsilon meson decays.
Evidence for the charmless annihilation decay mode $B_s^0 \rightarrow \pi^+ \pi^-$,

DZero:
Measurement of the Semileptonic Charge Asymmetry using B^0 meson mixing with the D0 detector
Measurement of the Semileptonic Charge Asymmetry using $B_s^0 \rightarrow D_s \mu X$ Decays
Observation of a Narrow State Decaying into $Y(1S) + \gamma$ in pp Collisions at $\sqrt{s} = 1.96$ TeV
Measurement of the Λ_b^0 Lifetime in the Exclusive Decay $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ in pp Collisions
Measurement of the CP-Violating Phase $\phi_{s \psi \phi}$ using the Flavor-Tagged Decay $B_s^0 \rightarrow J/\psi \phi$ in 8 fb$^{-1}$

2011:

CDF:
Observation of the Ξ_b^0 baryon
Measurement of CP-violating asymmetries in $D^0 \rightarrow K^+ K^-$ and $D^0 \rightarrow \pi^+ \pi^-$ decays at CDF
Measurements of direct CP violating asymmetries in charmless decays of strange b mesons/baryons

DZero:
Measurement of the Anomalous Like-Sign Dimuon Charge Asymmetry with 9 fb$^{-1}$ of pp Collisions
Measurement of the Production Fraction Times Branching Fraction $f(b \rightarrow \Lambda_b) \cdot B(\Lambda_b \rightarrow J/\psi \Lambda)$

Gregorio Bernardi / LPNHE-Paris
Publications in Run II, so far

Already now, many more publications in Run II than in Run I

CDF: 365 publications so far

~10 additional papers to be submitted by end of the year

Dzero: 295 publications so far

On pace for best year ever, with ~10 additional papers to be submitted by year end.
Tevatron Unique Dataset

- Different collision energy, $\sqrt{s_{\text{eff}}}$
 - Cross sections, asymmetries; e.g., top, electroweak
 - Different (QCD) backgrounds \rightarrow Tevatron evidence for $H \rightarrow b\bar{b}$
 (only evidence for direct coupling to fermion mass)

- $p\bar{p}$ collisions instead of pp

- Top quark forward-backward asymmetries:
 - Tevatron
 - LHC

- is an initial CP invariant state (B physics)

- Complementary! Production processes different mix of $q\bar{q}$ vs. gg collisions

- $t\bar{t}$ spin correlations

- Well understood detector + experts (and their past inputs)
 (plus lower level of pileup, only getting worse at LHC)
 - W boson mass
 - top quark mass
 (with full data set & (potential of reprocessed data)

- Clever detector operation,
 regular flipping of solenoid and toroid magnets
 - cancels charge tracking asymmetries to first order
 \rightarrow competitive CP invariance tests in heavy flavor
The planned new phenomena searches are close to completion.

It has been a very rich program, more than 150 NP papers published in Run II by CDF and DZero.

Some open questions (see also Top, B group sections):

- Wjj resonance at CDF, full dataset being analyzed.

Most future new phenomena results/interpretations will be performed through specific analyses in other physics groups.
Searches for the Tevatron, Difficult at LHC

ATLAS and CMS jj resonance searches start at $M_{jj} \gtrsim 1$ TeV.

For $M_{jj} < 200$ GeV, limits only from UA2 & UA1.

Dijet resonances

W'

$\bar{b}b$ resonances

Theoretical cross section is proportional to $g_{W'}^2 B(W' \to e\nu)$.

E.g. A W' boson with couplings to quarks $g_{W'} \approx 0.1 g_{SM}$, and $B(W' \to e\nu) \lesssim B(W \to e\nu)$ is not yet constrained.
Higgs: prospects

In preparation (CDF)
- Full CDF-D0 combination
- \(\text{ZH} \rightarrow \nu\nu\text{bb} \) search
- Hbb combination
- CDF All-channels combination
- VV and V+jj bckgds in VH - searches
- Z(\(\ell\ell\))+jj distributions
- W(\(l\nu\))+jj distributions
- MET+jj distributions

In preparation (Dzero)
- Full CDF-D0combination
- SM Higgs in WH or Inujj/jjjj final s.
- Higgs in trilepton and SS dilepton
- HCP-D0 All-channels combination
- \(\text{ZH} \rightarrow \ell\ell\text{bb} \) H+
- \(X \rightarrow \ell\ell\) tautau
- \(H \rightarrow \gamma\gamma\)
- Search for ttH
- \(b\phi \rightarrow \text{bbb} \) (full dataset)

2013

- Couplings in \(H \rightarrow \text{bb}\)
- Spin-parity discrimination
- Final D0 Combination

Program will be completed in 2013

Gregorio Bernardi / LPNHE-Paris
Higgs Results Finalizations and Interpretation

- Finalize measurements and combinations (winter 2013)
- measure deviations of couplings from the SM prediction (arXiv:1209.0040).
 Basic assumptions: only one underlying state at $m_H \sim 125$ GeV, negligible width, CP-even scalar
- Under these assumptions all production cross sections and branching ratios can be expressed in terms of a few common multiplicative factors to the SM Higgs couplings:

$$\sigma(WH)BR(H \to bb) = \sigma_{SM}(WH)BR_{SM}(H \to bb) \frac{K_W^2 K_b^2}{K_H^2}$$

Spin-Parity from VH final state

Measure custodial symmetry, via WH vs ZH:

Final results:

Measure custodial symmetry, via WH vs ZH:

$$\lambda_{WZ}^{\text{meas}} = 1.0^{+0.7}_{-0.3}$$

Spin-Parity from VH final state

Gregorio Bernardi / LPNHE-Paris
QCD: prospects

In preparation:
- $\gamma+b$, $\gamma+c$ production with full sample
- $\gamma\gamma$ production with full sample
- $W+$light flavor cross section
- Observation of $W+c$ production

≥ 2013:
- Inclusive γ production with full sample
- Double parton interactions
- Double pomeron exchange in exclusive hadron production
- Underlying event studies with 3 collision energy
- $\gamma+$light flavor production with full sample
- Studies of minimum bias events at 3 collision energy
- Diffraction studies (Bose-Einstein correlations, exclusive hadron production, pomerons in jet events)

In preparation:
- Ratio of $Z+b/Z+\text{jet}$ differential cross sections
- Rapidity dependence of $\Delta\phi$ in Dijet events
- Diphoton differential cross sections
- $W+\text{jets}$ differential distributions
- Photon+jet triple differential cross section
- Ratios of $Z+c/Z+\text{jet}$ & $Z+c/Z+b$ cross section

≥ 2013:
- alpha_s combination from jet measurements
- Single diffraction diff. cross section
- $W+c/b$ differential cross sections
- $J/\psi+J/\psi$ cross section
- Double parton (DP) interactions in $\psi+HF+2\text{jets}$
- Di-b-jet/Dijet mass cross section ratio
- Triple jet differential cross section
- Jet event shapes
- Inclusive jet cross section
- DP interactions in $\gamma\gamma+jj$ - DP in $J/\psi+J/\psi$ events
- $\gamma+bb(cc)$ diff. cross section
- FB asym. In $b+b\bar{b}(c+c\bar{b})$ events

Gregorio Bernardi / LPNHE-Paris
Inclusive Jets: Tevatron vs. LHC

- \(x-Q^2 \) regions accessible at fixed target, DIS, Tevatron and LHC are complementary
- Tevatron jet data are main source constraining gluon PDF at high \(x \)

\[
\text{fastNLO prediction} \\
\frac{d^2\sigma}{dx_T^2} \mathbf{(pb)}
\]

\[
\begin{align*}
\text{Tevatron} & \quad \text{sqrt}(s)=1.96 \text{ TeV} \\
\text{LHC} & \quad \text{sqrt}(s)=14 \text{ TeV}
\end{align*}
\]

- **Tevatron (ppbar)**
 - >100x higher cross section @ all \(x_T \)
 - >200x higher cross section @ \(x_T >0.5 \)

- **LHC (pp)**
 - need more than 2400 fb\(^{-1}\) luminosity to improve Tevatron @ 12 fb\(^{-1}\)
 - more high-\(x \) gluon contributions
 - but more steeply falling cross sect. at highest \(p_T \) (=larger uncertainties)

→ Tevatron results will dominate high-\(x \) gluon for some years

Gregorio Bernardi / LPNHE-Paris
Heavy Flavor: prospects

In preparation:
- Bc lifetime in $B_c \to J/\psi \eta$ decays
- D^0 mixing with full sample
- $b \to sll$ decays with full sample
- Evidence for Λ_b^*
- A_{CP} in $B \to hh'$ decays with full sample
- Search for $B_{s,d} \to \mu\mu$ with full sample
- $BR(B_s \to J/\psi \phi)$ and fragmentation fractions
- K production associated D_s^+/D^+ mesons

2013:
- B^{**} decays
- Y cross section and polarization
- Charm production in minimum bias events
- Excited baryons ($K_s^0, \Lambda 0$) in min. bias evts

>2013:
- Quarkonia (χ_b, χ_c fractions, $Y+X$ spectroscopy, fragmentations in Y events, h_b searches, low mass Drell-Yan and J/ψ studies)
- Doubly charmed and bottom-charmed baryons
- Multiple heavy flavor production
- Baryon polarization
- Heavy flavor in jets

In preparation:
- Search for $B_s \to \mu\mu$
- B_s lifetime in semileptonic decays

2013:
- Final dimuon asymmetry paper
- $B_s \to J/\psi f_0$ lifetime and CPV
- Search for $B_s \to D_{s} \mu\mu X$ decays
- Search for direct CPV in $B^+ \to J/\psi K^+$ decays
- $\Lambda_b \to \psi (2S) \Lambda_0$ branching ratio
- $\psi (2S) \to \mu\mu$ cross-section

>2013:
- Exotic states, XYZ
- J/ψ polarization
- di-J/ψ production
- CPV asymmetry in Charm ($D^0 \to K\mu\nu X$)
- Search for $B_{c}^+ \to J/\psi D_s^+$
- $\Lambda (2S) \to \mu\mu$ cross-section

Gregorio Bernardi / LPNHE-Paris
Top quark: prospects

In preparation:
- Top charge in l+jets channel with full sample
- Top mass in MET+jets channel
- Top pair cross section in dilepton channel
- $\text{BR}(t \rightarrow Wb)/\text{BR}(t \rightarrow Wq)$ in l+jets channel
- Top pair cross section in $e/\mu+\tau$ channel
- Top mass in dilepton channel (Dalitz-Goldstein method)
- Top pair cross section Tevatron combination

2013 and beyond:
- Direct top width measurement in l+jets channel
- Top pair differential cross sections in l+jets
- A_{FB} in dilepton channel
- A_{FB} in high-p_T bottom pairs
- Spin correlations/top polarization in dileptons
- Top charge in dilepton channel
- Single top x-section in l+jets channel & MET+jets
- $\text{BR}(t \rightarrow Wb)/\text{BR}(t \rightarrow Wq)$ in dilepton channel
- Top mass in dilepton channel (φ_ν-weighting method)
- Top mass in all-jets channel
- Top pair cross section in l+jets channel
- Combinations (M_{top}, σ_{tt}, A_{FB}, single top)

In preparation:
- FB asymmetry in dilepton channel
- Top pair cross section Tevatron combi.

2013 and beyond:
- differential ttbar cross sections
- inclusive cross section
- l+jets ME top mass
- s-channel single top
- leptonic asymmetry in l+jets
- top charge
- all-jets top mass
- $ttbar$ spin correlations
- Combinations (M_{top}, σ_{tt}, A_{FB}, single top)
With the improvements achieved or planned at CDF (~30% in b-tagged dilepton channel, 20 and 27% in lepton and MET+jet channels, 10% in all jets) and at Dzero (~30% in dilepton and lepton+jets, and a new result in all jets) we expect a ~20% improvement in the new Tevatron combination, from 0.9 GeV (2011) down to 0.7 GeV with the full sample.
In the SM, this effect only happens for $q\bar{q}$ initial states
- SM predicts no asymmetry at LO in QCD, and a small asymmetry at NLO

Working on the full data sample, both in dilepton and lepton+jet final state to confirm or not tantalizing excess seen by CDF and Dzero

Potential for 5σ deviation from NLO QCD with final Tevatron combination in 2013
Expected s-channel single top significance

Difficult channel at LHC since produced by qqbar annihilation. Important channel since BSM effects may manifest differently in s and t channel.

Significance is difficult to anticipate as it depends on the measured result.

We expect \sim4σ s-channel significance from CDF and Dzero separately (combining lepton+jets and MET+jets decay modes using full data sample).

With Tevatron combination a 5σ significance (observation) is within reach.

Gregorio Bernardi / LPNHE-Paris
Electroweak: prospects

2013:
- Weinberg angle with full sample
- \(W + \text{jets differential cross sections with full sample (CDF) } \)
- Search for \(Z \rightarrow \gamma \gamma \) with full sample (CDF)
- \(W \) Charge asymmetry (D0)
- \(Z \) boson angular coefficients (D0)
- \(Z \) boson Forward-Backwards Asymmetry (D0)
- \(Z \) boson rapidity (D0)
- \(ZZ \) production cross section with full sample

>2013:
- \(W \) mass with full sample
- \(W \) width with full sample
- \(W \) mass Tevatron combination
- \(W \) mass with forward electrons (D0)
- Search for rare decays (\(Z \rightarrow J/\psi \gamma, W \rightarrow \pi \gamma \)) with full sample (CDF)
Expected W mass precision

Assumptions:

- The red curve starts from the 200/pb total uncertainty and scales all uncertainties (except the theoretical ones) down as \sqrt{L}.
- The theory blue line is from the most recent analysis:
 - 4 MeV from QED and 10 MeV from PDFs
 - it is expected to go down, and is lower for forward leptons.

Gregorio Bernardi / LPNHE-Paris
CDF projected uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>0.2/fb (MeV)</th>
<th>2.2/fb (MeV)</th>
<th>10/fb (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton energy scale</td>
<td>23</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Lepton energy resolution</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Recoil energy scale</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Lepton removal</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>pT(W) model</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>PDFs</td>
<td>11</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>QED radiation</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total systematics</td>
<td>34</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>W statistics</td>
<td>34</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>19</td>
<td>10</td>
</tr>
</tbody>
</table>

Limiting factors:

1. PDFs (and QED)
2. BC-NBC difference
3. QED/energy loss modeling

BC = beam-constrained tracks
NBC = non-beam-constrained tracks

Assume 50% reduction in BC-NBC and QED/energy loss uncertainties
Assume the same scaling as 0.2/fb → 2.2/fb
Assume 1/√L scaling
Assume 50% reduction in PDF uncertainty
Assume the same QED
Assume 1/√L scaling
W-mass systematic uncertainties

DZero projected uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Published (2009) 1 fb⁻¹ CC</th>
<th>Published (2012) 4.3 fb⁻¹ CC</th>
<th>Projection 10 fb⁻¹ CC</th>
<th>Projection 10 fb⁻¹ CC+EC</th>
<th>Projection improved 10 fb⁻¹ CC</th>
<th>Projection improved 10 fb⁻¹ CC+EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>23</td>
<td>13</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Experimental syst.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron energy scale</td>
<td>34</td>
<td>16</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Electron energy resolution</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Electron energy nonlinearity</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>W and Z electron energy loss differences</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Recoil model</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Electron efficiencies</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Exp. Syst. Subtotal</td>
<td>35</td>
<td>18</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Theoretical syst.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>QED</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Boson pT</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Theo. Syst. Subtotal</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>9</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Systematic total</td>
<td>37</td>
<td>22</td>
<td>19</td>
<td>15</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>26</td>
<td>21</td>
<td>17</td>
<td>19</td>
<td>15</td>
</tr>
</tbody>
</table>

Electron channel only

Gregorio Bernardi / LPNHE-Paris
If we use the measured mass of the Higgs-like boson to constrain the W boson mass based on SM, we get:

$$m_W = 80.359 \pm 0.011 \text{ GeV}$$

Comparing with the current world average directly measured value:

$$m_W = 80.385 \pm 0.015 \text{ GeV}$$

With a world average around 10 MeV dominated by the Tevatron, and no change in central values, test direct and indirect Higgs mass values.

Significant anomaly could be detected if central value would slightly move apart, while reducing uncertainties.

Currently we have good agreement !!!

Gregorio Bernardi / LPNHE-Paris
CDF Paper Projections

<table>
<thead>
<tr>
<th>Topic</th>
<th>close</th>
<th>~2013</th>
<th>>2013</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroweak</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Higgs + BSM</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Top</td>
<td>7</td>
<td>14</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>QCD</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Heavy Flavor</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Totals</td>
<td>20</td>
<td>30</td>
<td>19</td>
<td>69</td>
</tr>
</tbody>
</table>

69 papers expected, most of them in 2013-2014
Dzero Paper Projections

<table>
<thead>
<tr>
<th>Topic</th>
<th>close</th>
<th>~2013</th>
<th>> 2013</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electroweak</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Higgs + BSM</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Top</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>QCD</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Heavy Flavor</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Totals</td>
<td>16</td>
<td>37</td>
<td>17</td>
<td>70</td>
</tr>
</tbody>
</table>

70 papers expected, most of them in 2013-2014

Gregorio Bernardi / LPNHE-Paris
CDF Milestone papers to come

- **QCD**
 - Photon production (γ inclusive, γ +light or heavy flavor, $\gamma\gamma$)
 - Diffraction studies at 3 collision energies (300, 900, 1960 GeV)
 - Double parton interactions

- **Heavy Flavor**
 - CP violation in the charm sector (D^+, D_s, A_{SL})
 - BR($B\to hh$)

- **Top**
 - Forward-backward asymmetry, differential cross sections
 - Single top observation in s-channel combining $l+j$ and $\nu+j$ decay modes
 - M_{top} with all data in all decay modes (all-jets, $l+jets, \nu+jets, ll$)
 - Combinations (CDF, Tevatron)

- **Electroweak**
 - W+jets differential cross sections
 - θ_W with all data
 - M_W with all data, combination (Tevatron)

- **Higgs**
 - Couplings, spin and parity determination, combinations (CDF, Tevatron)
Dzero Milestone papers to come

- **QCD**
 - di-b-jet/di-jet cross section ratio
 - V+Heavy flavor differential measurements
 - Double parton interactions
 - Jet event shapes

- **B Physics**
 - Final dimuon asymmetry measurement (D0)
 - Search for direct CPV in B⁺ → j/Psi K⁺

- **Top**
 - Mass with full dataset (Tevatron combination)
 - Forward-Backward asymmetry (combination of leptons and l+jets, Tevatron comb)
 - Observation of single top s-channel (Tevatron combination)

- **Electroweak**
 - Forward-backward asymmetries (PDF constraints, θ_w)
 - W mass (~10 MeV precision), tests of the Standard Model (Tevatron combination)

- **Higgs**
 - Measurement of Hbb couplings, determination of Spin-Parity
 - Tevatron combinations
The CDF and Dzero collaboration are producing milestones results at high rate. The current computing & algorithms activities are being finalized, the physics keep coming out at an impressive rate, with a clear program ahead.

We are exploiting this unique 10 fb$^{-1}$ proton-antiproton dataset, with optimized reconstruction, simulation and analysis methods.

Major results are world best (Top mass, W mass, H\rightarrowbb significance), often with only a subset of the full Data sample, progress in front of us.

Anomalies (Top Afb, Dimuon Asymmetry..) uniquely studied at the Tevatron need final results on complete dataset.

Looking forward, there are several important achievements to be realized, including for each collaboration \sim70 publications and \sim45 theses.

We are writing the legacy of the Tevatron, and contributing to answer several fundamental open questions of high energy physics.

➤exciting times (2013-2014) ahead of us