[Modular Planar Germanium (MPGe) Detector Systems for High Resolution\
Gamma-ray Spectroscopy and Tracking Arrays

DE-SC0009639
Ethan Hull PI, PHDS Co.

2/19/2013-4/14/2015

Collaboration with C.J. Lister at U. Mass Lowell

e  Modular System Concept: A Complete System Solution
* NPX-M = GeGl + GGC = MPGe next generation array concepts
* Radiation damage
 Charge-trap correction
* Lower temperature from mechanical cooler
 Trap correction technique
 Crystallography
* Radiation damage
* MPGe System design challenges
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The progression of the
modular detector system

NPX-M 70 Ibs

( GeGl-1 55 |bs )

( GeGl-4 28 |bs )




the enabling technologies
Segmented Detector Fabrication
Mechanically cooled systems
Large diameter crystal growth




I 16x16 Orthogonal strips, 5 mm pitch, 0.25 mm gaps, 10-mm thick, 90-mm diameter I
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Less hardware around the detector
Greater detector area



MPGe
4-Detector Array

14.7 cm face to face
27 solid angle coverage
6 ft. tall

Close proximity
Higher luminosity
- More radiation damage!




Radiation damage and rate considerations: Next generation heavy ion array
From 10 particle*nA = | particle* A (x100)

Detector is ~ 10 cm from a 1 mg/cm? Pb target

X- and gamma-ray count rate ~ 40 kcps/strip
Advantage of smaller strip segments

Fast fission neutrons ~ 4x103 n/cm?2/sec x 2 weeks = 5x10° n/cm?
~ 2 week runs offers reasonable physics measurements stats

Resolution degradation becomes visible at ~108 n/cm? level.
Resolution degradation can be severe at ~10° n/cm? level.

Two unique tools we have with MPGe planar detector concept
1. Temperature
2. Charge collection physics

Temperature sensitivity of radiation damage ...



1. Temperature. Higher temperature - more hole trapping
Mechanical cooler affords operation at temperature below 77 K
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And geometry is the reason trapping degrades the resolution ....



2. Charge collection physics
Gamma-ray energy resolution degradation is caused by depth variation
Strip detector CFD Timing of electrons vs. holes (depth) = Trap corrector
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NP6 Pixel (7,24) Energy spectrum.
Pixel is a timing coincidence between 7 and 24.
Electron trapping.
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NP6 Pixel (7,24)
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NP6 Pixel (7,24) h* drift
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Measurement and application of
the charge trap corrector
NP6 Pixel (7, 24)
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and the rest of the pixels...



All Pixels
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This is electron trapping from a Ge crystal as grown ....



Electron trappingin a (1 0 0) HPGe crystal

Four-fold “square” symmetry of (1 0 0) axis



662-keV Centroid Shift Factor

662-keV Centroid Shift Factor

0123456 7 8 9101112131415

FWHM = 2.0 keV

Corrected FWTM = 4.1 keV

640 645 650 655 660 665 670




FWHM (keV) " FWTM (keV)

m8-10
=68 m 20-25
M 4-6 H 15-20
H2-4 ™ 10-15
m0-2 m5-10
m0-5
01234567 8 9101112131415 o 2 4 6 8 10 12 14

1. Trap correction
2. A map or image of charge collection properties !!



3.7 MeV protons 2>
Li(p,n)’Be
- 2.0 MeV neutrons
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A charge-carrier trap correction technique was developed for orthogonal strip planar germanium
gamma-ray detectors. The trap comector significantly improves the gamma-ray energy resolution of
detectors with charge-carrier trapping from oystal-growth defects and radiation damage. Two
orthogonal-strip planar germanium detectors were radiaton damaged with 2-MeV neutron fluences
of ~8 = 107 n/am®. The radiation-damaged detectors were studied in the 60-80 K temperatume range.
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1. Introduction

Germanium detectors have been the best gamma-ray energy
spectrometers for five decades. Their excellent energy resclution is
due o good charge-carrier mobility and efficient charge-carrier
collection at the detector contacts. Charge-carrier trapping causes
position-dependent pulse-height deficits that degrade the gamma-
ray energy resolution In germanium, trapping sites can be formed
during cryst@al growth both thermally and through contaminaton
[1-3]. Muclear collisions between energetic massive partides, such
as protons amd neutrons, and germanium nudei create giant
disordered regions in the germaniem crystal [4.5]. In the depleted
detector, these giant disordered regions develop a negative charge
state making them preferential hole-trapping sites |6]. Radiation
damaee considerations are imporzant in accelerator environ ments,

of Green's reciprocation theorem [7]. The relevance of Green's
thecrem to semiconductor-detector signal induction is often
described as the “weighting field" effect, the “near-field” effect,
or “Ramo's theorem” [B-13 | The gamma-ray peak shape depends
on multiple factors including Compton scattering, the electro-
s@atics of charge induction, and the degree of charge-carrier
trapping | 14-1&]. Charge-induction electrostatics have been recog-
nized and used to correct some level of hole trapping in radiation-
damaged coaxial germanium and segmented coaxial detectors
resulting in improved gamma-ray peak shapes [17-20]. Building
on this earlier work, we have developed a charge-carrier trap
correction technigue or “wrap corrector” specifically for ortho-
gonal -sirip planar germanium detectors. A planar trap corrector
provides a unique view of charge-carrier trapping because charge
carriers drift in a single crystallographic direcdon, unli ke a coaxial



MPGe

Radiation damage

Temperature
Trap corrector

Modular Design + larger crystals
Low-overhead arrays
Greater solid angle coverage
Lower cost
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