Center for Cancer Research

Xe-129 as a Replacement for He-3 in Hyperpolarized Lung Imaging

Murali Cherukuri (NCI), Simhan Danthi (NHLBI)
Work in my group:

13C tracers for hyperpolarized tumor imaging in clinic in prostate, brain, and kidney cancers to define surgical margins.

Slides on hyperpolarized lung imaging with He-3 and Xe-129 presented today are from:
 Prof. John Mugler, U. Virginia
 Prof. Sean Fain, U. Wisconsin
 Prof. Dmitriy A. Yablonskiy, Washington University
Why He-3 MRI?
The burden of lung disease

- COPD: chronic obstructive pulmonary disease
 - 3rd leading cause of death in U.S.\(^1\)
 - More than 10 million adults in U.S. have COPD\(^2\) and an estimated 64 million worldwide\(^3\)
 - National cost of ~$50 billion\(^4\)

\(^4\)NIH-NHLBI. Morbidity and Mortality: 2009 Chartbook on Cardiovascular, Lung and Blood Diseases.
The burden of lung disease

• Asthma
 ▪ Affects 19 million adults and 7 million children in U.S.1
 ▪ Leading cause of school absences from a chronic illness2
 ▪ National cost of ~$18 billion3

The burden of lung disease

• CF: cystic fibrosis
 ▪ 2nd most common life-shortening, inherited disorder in U.S. children\(^1\)
 ▪ Affects ~30,000, with ~10 million genetic carriers\(^2\)
 ▪ Median age of survival less than 40 yrs\(^2\)

\(^{2}\)Cystic Fibrosis Foundation. About Cystic Fibrosis: What You Need to Know. (www.cff.org/AboutCF/).
Standard of care: PFTs

• Advantages
 ✓ Functional information: ventilation, gas-exchange
 ✓ Widely available
 ✓ Inexpensive, easy to administer

• Disadvantages
 ✗ NO regional information
 ✗ Insensitive to early disease and gradual progression
 ✗ Issues with reproducibility

FEV$_1$: forced expiratory volume in 1 sec.

1PFTs = Pulmonary Function Tests (spirometry, body plethysmography, DLCO)
Clinical modalities: CT

- Advantages
 - ✔ High spatial (sub-millimeter) and temporal resolution
 - ✔ Widely available
 - ✔ Quantitative evaluation of tissue density

- Disadvantages
 - ✗ Radiation (limitation for longitudinal or pediatric studies)
 - ✗ Spatial resolution less than alveolar size
 - ✗ Challenging to obtain direct functional information
Clinical modalities: Nuclear medicine

- Advantages
 - Functional information: ventilation, V/Q mismatch
 - Widely available

- Disadvantages
 - Radiation (limitation for longitudinal or pediatric studies)
 - Poor spatial and temporal resolution
 - Very limited structural information
Clinical modalities: Nuclear medicine

- Advantages
 - ✔ Functional information: ventilation, V/Q mismatch
 - ✔ Widely available

- Disadvantages
 - ✗ Radiation (limitation for longitudinal or pediatric studies)
 - ✗ Poor spatial and temporal resolution
 - ✗ Very limited structural information
Motivation:

• High health and societal impact of lung disease

• Clear need for improved regional assessment of lung structure & function
Conventional proton MRI

- Signal source
 - Nuclear magnetic moment ("spin") of protons in water & fat molecules
Conventional proton MRI

• Signal strength
 ▪ Alignment (nuclear polarization) of spins in scanner magnet
 ▪ Proportional to magnet strength (B_o)
 ▪ Polarization on the order of parts per million ($\sim 10^{-5}$)
Conventional (¹H) MRI
Hyperpolarized-gas MRI

- **Signal source**
 - Nuclear magnetic moment of helium-3 or xenon-129 noble-gas atoms

- **Helium-3 (3He)**
 - Rare isotope of helium
 - Product of tritium (3H) decay

- **Xenon-129 (129Xe)**
 - Natural component of atmosphere (0.001%)
 - 26% isotopic abundance
Hyperpolarized-gas MRI

• Signal strength
 ▪ Nuclear polarization created by external laser-based device ("polarizer")
 ▪ Independent of scanner magnet strength
 ▪ Polarization ~50%
Hyperpolarized-gas imaging protocol

1. POLARIZE
2. DISPENSE
3. INHALE
4. IMAGE

3He flexible chest coil
Dynamic Imaging of Respiratory Maneuvers

Imaging of Ventilation

Conventional (¹H) and Hyperpolarized ³He MRI

³He MRI
Moderate Asthma

³He MRI Normal

³He MRI Normal

³He MRI Normal

³He MRI Normal

¹H MRI Normal

¹H MRI Normal

¹H MRI Normal

Severe Asthma

Severe Asthma

Lung function & structure with ^3He

- Ventilation
- Microstructure
- Alveolar oxygen concentration
- Pulmonary biomechanics
Ventilation

- **Static**: distribution of gas following inhalation
 - Low-flip-angle gradient-echo pulse sequence during breath hold
- Pathology induces ventilation “defects”
Ventilation

• Dynamic: distribution of gas during respiration
 ▪ Repeated acquisition using low-flip-angle GRE pulse sequence
 ▪ Spiral or radial k-space sampling

• Air trapping

• Gas washout rate and quantitative (specific) ventilation

Fig. 3 from MH Deppe et al. ISMRM 2011; 910
Ventilation: Applications in disease

- COPD / Emphysema
- Asthma
- Cystic fibrosis
- Lung transplant / rejection
Asthma: Provocation & treatment

Provocation: Exercise

Baseline: FEV$_1$ 103%
Post-exercise: FEV$_1$ 40%

Treatment: Albuterol

Baseline: FEV$_1$ 36%
Post-Albuterol: FEV$_1$ 57%

3He in short supply.

Supply issue focuses attention on the alternative agent: ^{129}Xe
129Xe to the rescue:

Is 129Xe a viable replacement for 3He?
129Xe vs. 3He for lung MRI

<table>
<thead>
<tr>
<th></th>
<th>3He</th>
<th>129Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyromagnetic ratio ($γ$) [MHz/T]</td>
<td>32.4</td>
<td>11.8</td>
</tr>
<tr>
<td>Diffusivity in air [cm2/s]</td>
<td>\sim0.9</td>
<td>\sim0.1</td>
</tr>
<tr>
<td>Polarization for \sim1 L (historic)</td>
<td>\sim50%</td>
<td>\sim10%</td>
</tr>
</tbody>
</table>

- 3He easier to polarize
- Advances in 129Xe polarization needed
129Xe vs. 3He for lung MRI

<table>
<thead>
<tr>
<th></th>
<th>3He</th>
<th>129Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyromagnetic ratio (γ) [MHz/T]</td>
<td>32.4</td>
<td>11.8</td>
</tr>
<tr>
<td>Diffusivity in air [cm2/s]</td>
<td>~0.9</td>
<td>~0.1</td>
</tr>
<tr>
<td>Polarization for ~1 L (historic)</td>
<td>~50%</td>
<td>~10%</td>
</tr>
<tr>
<td>Solubility</td>
<td>negligible</td>
<td>high in lipids</td>
</tr>
</tbody>
</table>

- 129Xe can probe pulmonary gas exchange
- 129Xe has anesthetic side effects
129Xe vs. 3He for lung MRI

<table>
<thead>
<tr>
<th></th>
<th>3He</th>
<th>129Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyromagnetic ratio (γ) [MHz/T]</td>
<td>32.4</td>
<td>11.8</td>
</tr>
<tr>
<td>Diffusivity in air [cm2/s]</td>
<td>~0.9</td>
<td>~0.1</td>
</tr>
<tr>
<td>Polarization for ~1 L (historic)</td>
<td>~50%</td>
<td>~10%</td>
</tr>
<tr>
<td>Solubility</td>
<td>negligible</td>
<td>high in lipids</td>
</tr>
<tr>
<td>Sensitivity to local environment</td>
<td>negligible</td>
<td>exquisite</td>
</tr>
</tbody>
</table>

- ~200 ppm range of chemical shifts for 129Xe
^{129}Xe vs. ^{3}He: Ventilation
129Xe ventilation in disease

Asthma

COPD

Cystic Fibrosis
^{129}Xe vs. ^{3}He: ADC

^{129}Xe

Healthy COPD

^{3}He

Healthy COPD

0.0 cm²/s 0.12 cm²/s 0.85 cm²/s
$^{129}\text{Xe in the lung}$

- "gas phase" → ventilation
 - ~98% of ^{129}Xe
- "dissolved phase" → gas uptake
 - ~2% of ^{129}Xe

Amplitude vs. Chemical shift [ppm] (∝ frequency)

Airspaces, lung parenchyma/plasma, red blood cells
129Xe to the rescue:

- For applications pioneered with 3He, 129Xe can provide comparable results.
- Added value of 129Xe in providing regional quantification of gas uptake or exchange.
Motivation

COAST
Childhood Origins of ASThma

A prospective birth cohort study designed to evaluate genetic and environmental factors contributing to the development of childhood asthma

• 287 children enrolled at birth
• At-risk: Parental allergies and asthma
• Key Collaboration – PI Dr. Robert Lemanske, Pediatrics and Allergy and Immunology, Medical Physics, Radiology

Funded by the NHLBI
Summary

• Lung disease is a major worldwide health issue with substantial societal impact.

• Hyperpolarized-gas MRI offers unique functional & structural information about the healthy & diseased lung.

• Xe-129 can be used as an alternate to He-3

• He-3 is the only choice for pediatrics.